
PROCEEDINGS
of

1986 CONFERENCE
o n

ARTIFICIAL INTELLIGENCE
APPLICATIONS

Uncl as
QOj’b3 02333130

NASA GODDARD SPACE FLIGHT CENTER
GREENBELT, MAR

PROCEEDINGS
of

1986 CONFERENCE
o n

ARTIFICIAL INTELLIGENCE
APPLICATIONS

MAY 15, 1986 Y’

NASA GQDDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

SPONSORED BY CODE 514, SPACECRAFT CONTROL PROGRAMS BRANCH
AND BENDIX FIELD ENGINEERING CORPORATION

Message from the Co-Chairmen

The conference co-chairmen take pleasure in
welcoming the attendees of the 1986 Conference on
AI Applications. We hope that this conference will
succeed in bringing a few current expert system
applications to your attention, with the
expectation that such exposure will help
"demystify" the software products labeled "expert
systems".

The papers presented at this conference focus on
AI applications related to space science. Some of
today's papers pertain to mission operations
support and to the support of planning for
spacecraft command and science operations. Other
papers discuss applications areas of general
interest to expert system implementers at the
Goddard Space Flight Center. We hope that you will
find these papers informative and interesting.

We also have a few demonstrations of practical AI
applications and a demonstration of the new NOVEX
FORTH chip. We encourage you to take advantage of
the opportunity to view these implementations.

The co-chairmen of this conference would like to
express their appreciation to Patricia Lightfoot
of the NASA Goddard Spacecraft Control Programs
Branch and to Jerry Barsky of the Bendix Field
Engineering Corporation for making this event
possible. We would also like to thank some co-
workers for assisting with conference preparations
for the past few months, especially Phil Marino,
Ellen Stolarik, Ron Littlefield, David McLean, and
Carolyn Dent.

David Beyer
Software and Engineering Services,
Bendix Field Engineering Corporation,
Lanham, Maryland

William Macoughtry
Spacecraft Control Programs Branch,
NASA Goddard Space Flight Center,
Greenbelt, Maryland

i i

TABLE OF CONTENTS

Message from the Co-Chairmen ii

Kaunot;n; ‘.*.....,l
Patricia Lightfoot

The Development of an IntelliRent User
85/

Interface fox HASA’sScien tifiq
William Campbell and Larry Roelofs

e4. Goes FORTH. * 2 O S L
William Dress

-- The Expert Project mpaaement System 2 8 2
Barry Silverman

AB EXPbrt Sysf;lem fss Ground Support
* -“% af:441g! Spaqa Telescope

Don Rosenthal

h E m m m & A i d i _ n g
Software mnc-t;onal.
Goddard ’3 !22mEmd

!2aas Studv and Les sons 5% Jay Liebowitz

The lhXz!m zmd Appli catiog 9-$a
Transnor table In ference EnRine (TIE11 7

David McLean

A Prototype Expert System OPS5 for
Data Error Detection 9

James Rash

Mu1 t iper spective Analysis Testing
- of Expert Systems 10

Terry Bollinger

iii

SimPlrt Methaas e% Exvloitina
Underlvinrq Structure s f Pule -Based
~ Y s t e r n S ..

James Hendler

-l%sEsz%mm%9L:Extractign P SYstem Reauirem entg 122
Robert Hobbs and T . Patrick Gorman

i v

A I Cha l l enges f o r S p a c e c r a f t C o n t r o l Programs

Patr ic ia L i g h t f o o t

Spacecraft C o n t r o l Programs Branch
NASA Goddard Space F l i g h t Cen te r
G r e e n b e l t , Maryland

Welcome t o t h e 1986 Conference on A r t i f i c i a l I n t e l l i g e n c e
a t t h e Goddard Space F l i g h t Cen te r . T h i s c o n f e r e n c e is a
s t e p towards u n i t i n g t h e r e s e a r c h i n a r t i f i c i a l
i n t e l l i g e n c e w i t h t h e development of sys tems t o b e used f o r
s u p p o r t o f f u t u r e NASA miss ions . The g o a l of t h i s
c o n f e r e n c e is t o s h a r e e x p e r i e n c e s abou t t h e development of
a r t i f i c i a l i n t e l l i g e n c e a p p l i c a t i o n s , t o promote t h e
u t i l i z a t i o n of a r t i f i c i a l i n t e l l i g e n c e technology i n
s p a c e c r a f t and exper iment command and c o n t r o l sys tems and
mis s ion p l ann ing sys tems, and t o p r o v i d e a b e t t e r
unde r s t and ing of t h e p l a n s of o t h e r s f o r t h e u s e of A I
t echnology.

The S p a c e c r a f t C o n t r o l Programs Branch is r e s p o n s i b l e f o r
t h e development and o p e r a t i o n of t h e GSFC d a t a sys tem
components which p r o v i d e miss ion s u p p o r t f o r p l ann ing and
command of s c i e n c e and s p a c e c r a f t o p e r a t i o n s . T h i s s u p p o r t
is provided t o p r o j e c t exper iment o p e r a t i o n s f a c i l i t i e s and
s p a c e c r a f t c o n t r o l l e r s and is opera ted t o c o o r d i n a t e
planned command o p e r a t i o n wi th t h e real-time s u p p o r t
p rovided by t h e c o n t r o l c e n t e r s . The Branch ' s f a c i l i t y ,
The Command Management F a c i l i t y , s e r v e s as t h e f o c a l p o i n t
f o r r e c e i p t of exper imenter i n p u t s and c o o r d i n a t i o n of
exper imenter r equ i r emen t s w i th s p a c e c r a f t r equ i r emen t s .
The f a c i l i t y a l s o p r o v i d e s f o r d i s t r i b u t i o n of planned
o p e r a t i o n a l t i m e l i n e s t o v a r i o u s expe r imen te r s .

H i s t o r i c a l l y , command and c o n t r o l f u n c t i o n s have been
implemented as computer ized sys tems w i t h o p e r a t i o n a l
p rocedures under human c o n t r o l . The computer ized f u n c t i o n s
have been t h o s e t h a t could be d e f i n e d and s p e c i f i e d i n an
unambiguous manner. Fur thermore , t h e s e f u n c t i o n s had t o be
d e f i n a b l e months o r y e a r s i n advance of t h e i r a c t u a l u s e .
Examples of command and c o n t r o l f u n c t i o n s t h a t are
t y p i c a l l y computer ized are a l g o r i t h m computa t ions , l i m i t e d
problem i d e n t i f i c a t i o n , i npu t /ou tpu t d a t a v e r i f i c a t i o n ,
d a t a s t o r a g e / r e t r i e v a l , d a t a f o r m a t t i n g , and l imited
problem r e s o l u t i o n .

1

Most command and c o n t r o l problems are handled by p rocedures
and peop le because of t h e d i f f i c u l t i e s i n d e f i n i n g a l l
p o s s i b l e c o u r s e s of a c t i o n and i n d e v i s i n g s o l u t i o n s . As
used here, a problem is any i s s u e , an unplanned o r
u n a n t i c i p a t e d happening, a c o n f l i c t i n p l a n s , o r an unusual
occur rence . A problem can a l s o b e caused by a good
s t i m u l i , such as an o p p o r t u n i t y t o obse rve a new c e l e s t i a l
phenomena.

The " b e s t " s o l u t i o n t o a problem is n o t a lways a s t a t i c
s o l u t i o n . Sometimes, t h e " b e s t " s o l u t i o n changes and is
based on t h e resu l t s obta ined from us ing p r e v i o u s " b e s t "
s o l u t i o n s t o t h e problem. I n such cases, t h e d e c i s i o n
m a k e r g e n e r a l l y must (1) c o n s u l t l ists of p rede f ined
o p t i o n s , c o l l e a g u e s , e x p e r t s , o r t h e w r i t t e n r e c o r d s of
p r e v i o u s problem occur rences , (2) a n a l y z e t h e a v a i l a b l e
d a t a , and (3) d e v e l o p and implement a new s o l u t i o n . T h i s
p r o c e s s can b e t i m e consuming, may n o t c o n s i d e r a l l
p o s s i b l e s o l u t i o n s , and may n o t r e s u l t i n t h e " b e s t "
s o l u t i o n . I n fac t , a t times t h e p r o c e s s may b e so complex
t h a t no a c t i o n is t aken . For s c i e n c e o p e r a t i o n s , t h i s
could mean a l o s t o p p o r t u n i t y f o r expe r imen ta t ion w i t h a
s h o r t l i v e d phenomenon, s u c h as a s o l a r f l a r e . An
i n c o r r e c t d e c i s i o n made under t h e p r e s s u r e s of t i m e can
a l s o resu l t i n t h e loss of d a t a o r t h e loss of t h e
exper iment .

Expe r t sys tems technology can p r o v i d e t h e c a p a b i l i t y t o
b u i l d and o p e r a t e more e f f i c i e n t and e f f e c t i v e command and
c o n t r o l sys tems, e s p e c i a l l y f o r performing f u n c t i o n s t h a t
r e q u i r e t h e a n a l y s i s and s o l u t i o n of complex problems. The
r equ i r emen t s f o r command and c o n t r o l sys tems t o p r o v i d e
t h i s t y p e of d e c i s i o n s u p p o r t c a n be d e r i v e d from t h e
o p e r a t i o n a l s c e n a r i o of t h e miss ion t o b e suppor t ed . These
r equ i r emen t s i n c l u d e d e c i s i o n s u p p o r t f o r expe r imen te r s and
t h e f l i g h t o p e r a t i o n s team. The r equ i r emen t s f o r d e c i s i o n
s u p p o r t f o r p l ann ing s c i e n c e o p e r a t i o n s are expanding as
f u t u r e mis s ions w i l l n o t r e q u i r e t h a t t h e exper iment
c o n t r o l f ac i l i t i e s be l o c a t e d a t Goddard; t h e expe r imen te r s
w i l l have more c o n t r o l c a p a b i l i t i e s a t t h e i r home
i n s t i t u t i o n s which are l o c a t e d a c r o s s t h e c o u n t r y and i n
f o r e i g n c o u n t r i e s .

A t b e s t , t h e p r e s e n t methods f o r a n a l y s i s of s p a c e c r a f t and
exper iment command and c o n t r o l problems are unwieldy f o r a
d i s t r i b u t e d u s e r community. Data are s u b j e c t t o a l l of t h e
haza rds of long d i s t a n c e communication (between peop le and
between computers) : d a t a can be f i l t e r e d so t h a t a l l
r e l e v a n t d a t a are n o t a v a i l a b l e t o t h e u s e r s , users can b e
overloaded w i t h d a t a so t h a t t h e t i m e r e q u i r e d f o r

2

i n d i v i d u a l u s e r a n a l y s i s is unacceptab
g a r b l e d so as t o make an

a n a l y s i s d i f f i c u l t ; t h e
o c c u r s i n f ace - to - f ace m cked by t h e
communication barriers

A t i ts w o r s t , t h e a p p l i c a t i o n of p r e s e n t command and
c o n t r o l methods f o r a d i s t r i b u t e d u s e r community c a n r e s u l t
i n problem a n a l y s i s w i t h no i n p u t from t h e u s e r s . A
p o t e n t i a l e x p e r t sys tem implementat ion f o r c o o r d i n a t e d
problem a n a l y s i s i n c l u d e s a u s e r Is knowledge base
c o n t a i n i n g each u s e r ' s problem a n a l y s i s methods, p r e f e r r e d
c o u r s e s of a c t i o n , and problem impact a s ses smen t s . Such an
e x p e r t sys tem implementat ion cou ld (1) a l l o w t h e u s e r s t o
upda te t h e knowledge base, (2) f ac i l i t a t e problem a n a l y s i s
by u s i n g a l l a v a i l a b l e da t a , and (3) p r o v i d e t i m e l y
c o o r d i n a t i o n of t h e problem a n a l y s i s e f f o r t , T h i s
implementat ion could a l l o w t h e u s e r s t o p a r t i c i p a t e (v i a
t h e knowledge base) i n t h e a n a l y s i s p r o c e s s , reduce
communication barriers, and promote c o o r d i n a t e d problem
a n a l y s i s . T h i s sugges ted A I implementat ion may n o t be
f e a s i b l e now, b u t t h e p o t e n t i a l f o r u s ing e x p e r t sys tems
technology a s s i s t a n c e i n s o l v i n g t h i s problem e x i s t s .

Problem a n a l y s i s and r e s o l u t i o n is d i f f i c u l t i n t o d a y ' s
environment of c e n t r a l i z e d o p e r a t i o n s . I t is d i f f i c u l t t o
o b t a i n o p t i m a l s o l u t i o n s f o r e a s y problems t h a t have
p r e v i o u s l y o c c u r r e d , w h i l e t h e s o l u t i o n f o r a complex
problem is even more d i f f i c u l t t o op t imize . The
r e q u e s t s of some expe r imen te r s may have t o be sacrificed t o
honor t h e h i g h e r p r i o r i t y r e q u e s t s of o t h e r expe r imen te r s ,
and t h e r equ i r emen t s of some o r a l l of t h e s c i e n c e u s e r s
may be sacrificed t o e n s u r e s p a c e c r a f t h e a l t h and s a f e t y .
I n a d d i t i o n , d e c i s i o n m a k e r s may have t o make non-optimal
s o l u t i o n s because of p r e s s u r e s of t i m e , complex i ty of
c o o r d i n a t i o n , p r i o r i t y of mis s ion o b j e c t i v e s , s p a c e c r a f t
h e a l t h , o r p r i o r i t y of exper iments . Communication barriers
impact t h e a b i l i t y t o d e v i s e a s o l u t i o n i f t h e u s e r
community is d i s t r i b u t e d . A d i s t r i b u t e d user environment
makes t h e g i v e and t a k e of n e g o t i a t e d s o l u t i o n s a lmos t
impossible t o accompl ish i n a r e a s o n a b l e t i m e .

T y p i c a l l y , command and c o n t r o l sys tems have provided some
d e g r e e of o p e r a t o r c o n t r o l v i a a man-machine i n t e r f a c e , A
man-machine i n t e r f a c e g e n e r a l l y p r o v i d e s f o r a somewhat

stem t h a t is r e s p o n s i v e t o t h e needs of t h e
rs. Opera tor c o n t r o l can occur a t selected

3

i n t e r f a c e c a n a l s o be p rone t o human e r r o r . Some of t h e
weak p o i n t s of t h i s t y p e of command and c o n t r o l sys tem are
l is ted below.

1. An inexpe r i enced o p e r a t o r is more l i k e l y t o make
a m i s t a k e i n r e a c t i n g t o t h e s t i m u l i w h i c h
normal ly occur i n t h e c o u r s e of a mis s ion , b u t it
t a k e s a long t i m e t o d e v e l o p i n t o an exper ienced
ope ra t o r .

2. The " e x p e r t " o p e r a t o r may m a k e an e r r o r i n t h e
a n a l y s i s of t h e s t i m u l i and select t h e wrong
a c t i o n .

3 . The "expert" may n o t be a v a i l a b l e a t some
p a r t i c u l a r t i m e .

4. I t is d i f f i c u l t t o c a p t u r e "why" an e x p e r t
o p e r a t o r makes a d e c i s i o n so t h a t t h e l o g i c can
be a p p l i e d t o f u t u r e occur rences .

5. Rout ine o p e r a t o r decis ion-making, which could be
automated, is n o t automated because no r eco rd
is kept t o show t h a t t h e same d e c i s i o n is

4

t o d e s i g n and t o code.

2. The o r i g i n a t o r of a requi rement has d i f f i c u l t y
v e r i f y i n g t h a t t h e implementat ion is c o r r e c t .

3. System m o d i f i c a t i o n s must b e made By programmers.

4. Programming code is a b a r r i e r between t h e u s e r and
t h e system.

5. Mountains of documentat ion c a n b e a h ind rance t o
i ts u s a b i l i t y . There are two l e a r n i n g cu rves :
f i r s t , t o u s e t h e documents, t h e n , t o u s e t h e
s y s t e m

6. Implementat ion of new requ i r emen t s and sys tem
-' m o d i f i c a t i o n s i n r e sponse t o changing o p e r a t i o n a l

needs are t i m e consuming.

Some g o a i s of t h e S p a c e c r a f t C o n t r o l Programs Branch are t o
p r o v i d e more e f f i c i e n t and e f f e c t i v e s p a c e c r a f t and
exper iment o p e r a t i o n s , t o improve man-machine i n t e r a c t i o n s ,
and t o f ac i l i t a t e t h e sys tem development p r o c e s s . Expe r t
sys tems technology o f f e r s some p o s s i b l e s o l u t i o n s t o
f a c i l i t a t e ach iev ing t h e s e g o a l s .

One a s p e c t of a c h i e v i n g t h e s e g o a l s is t o d e v e l o p a s c i e n c e
and s p a c e c r a f t o p e r a t i o n s environment t h a t s u p p o r t s t h e
c o n c e p t of a d i s t r i b u t e d u s e r community, which a l l o w s t h e
users t o p o s s e s s a h igh d e g r e e of o p e r a t i o n s f l e x i b i l i t y ,
and which i n c l u d e s each user's r equ i r emen t s as p a r t o f any
d e c i s i o n t h a t impacts t h e user. A sys tem t o p r o v i d e t h i s
should:

f o r u s e r s t o l e a r n t h e
aracterist ics.

methods which reduce t

t h a t is r e q u i r e d t o a n a l y z e and

5

4. Rapid ly propose workable s o l u t i o n s , w i t h

5. P r o v i d e t h e r a t i o n a l e f o r t h e s e l e c t e d s o l u t i o n

t r a d e - o f f s , t o s u p p o r t nea r - r ea l - t ime o p e r a t i o n s .

t o an o p e r a t i o n a l problem.

6. Allow e x p e r t d e c i s i o n s t o be made by non-experts .

7. Optimize t h e d e c i s i o n us ing t h e u s e r ' s c r i t e r i a
f o r a c c e p t a b l e s o l u t i o n s .

Another a s p e c t of a c h i e v i n g t h e s e g o a l s i n v o l v e s s u p p o r t i n g
t h e development and o p e r a t i o n of a sys tem which h a s a h igh
t u r n o v e r of u s e r ' s , as w i l l b e t h e case i n t h e Space
S t a t i o n era, At ta inment of t h i s g o a l c a n be a ided i f t h e r e
is :

1. T i g h t e r c o u p l i n g of r equ i r emen t s t o sys tem
implementat ion t o p r o v i d e b e t t e r r equ i r emen t s
t r aceab i 1 i t y .

2. A n a t u r a l l anguage implementat ion (ra ther than a
programmers language) which a l l o w s u s e r ' s t o
unders tand t h e b u i l t system.

3. A s y n t h e s i z e d sys tem implementat ion w h i c h a l l o w s a
user t o b u i l d a customized v e r s i o n of t h e sys tem
o r t o r a p i d l y modify t h e sys tem t o accommodate new
requ i r emen t s .

4. A method of knowledge t r a n s f e r t h a t a l l ows
tomorrow's users t o b e n e f i t from t h e l e s s o n s
l e a r n e d today and t o avoid r e b u i l d i n g t h e w h e e l
and r e p e a t i n g m i s t a k e s .

5. A t r a n s p o r t a b l e sys tem implementat ion t h a t is n o t
dependent on s p e c i f i c vendor hardware and t h a t can
b e executed on a "cheap" hardware c o n f i g u r a t i o n as
w e l l as an on expens ive c o n f i g u r a t i o n .

6. An upgradab le sys tem implementat ion w h i c h can be
executed on f u t u r e s t a t e - o f - t h e - a r t hardware.

The c h a l l e n g e s of u s ing e x p e r t sys tems technology t o a t t a i n
t h e s e g o a l s are many. The f i e l d is r a p i d l y expanding and
moving towards p r a c t i c a l a p p l i c a t i o n s . I d e n t i f i c a t i o n of
c a n d i d a t e mis s ion s u p p o r t a p p l i c a t i o n s is c r u c i a l t o t h e
s u c c e s s f u l t r a n s i t i o n from t h e academic world .

6

While t h e r e
sys tems tec
observed . e a p p l i c a t i o n
should cons r d e r t o avoid t h e
development ce of t h i s new
technology. Sy
technology d o n t i o n a l l y implemented
sys tems, so
e x p e r t sys tems are r e q u i r e d . Methods of v e r i f i c a t i o n which
c a l l f o r "execu te e v e r y l i n e of code" are n o t a p p l i c a b l e .
L a s t l y , new methods of managing t h e development of e x p e r t
sys tems must b e developed s i n c e t o d a t e most
implementa t ions have been- i n a p r o t o t y p e environment .

T h e r e is a r e l a t i v e l y small g roup of i n d i v i d u a l s who are
exper ienced i n b u i l d i n g e x p e r t sys tems. For mis s ion
s u p p o r t a p p l i c a t i o n sys tem development , more peop le
w i l l have t o b e t r a i n e d i n t h e u s e of t h i s technology.
Knowledge e n g i n e e r s and e x p e r t sys tem d e v e l o p e r s are
r e q u i r e d .
Today, s e v e r a l s p e a k e r s w i l l d i s c u s s a v a r i e t y of
e x p e r i e n c e s w i t h , e x p e r t systems.

7

ses
William J. Campbell Code 634

NASNGoddard Space Flight Center
National Space Science Data Center

Greenbelt, Md. 20771

Larry H. Roelofs
Computer Technology Associates Inc.

McLean, Va. 221 02

ABSTRACT

The National Space Science Data Center (NSSDC)
has initihtedan lntell&ent Data Management (IDW
reseaah effort which has asone of its aomponents,
the development of an Intelligent User Interface (IUI).
The intent of the IUI effort 13 to devebp a friendly and
intelligent user interface service that is basedon
expert systems and natural language pmcessing
technologies. This paper presents the design
concepts, development approach and evaluation of
performance of a protome Intelligent User lntetface '
Subsystem (IUIS) supporting an operational
database.

1.0 INTRODUCTION

In the past decade, operations and research projects
that support a major portion of NASA's overall mis-
sion have experienced a dramatic increase in the
volume of generated data and resultant information
that is unparalleled in the agency's history. The ef-
fect of such an increase is that most of the science
and engineering disciplines are suffering from an
information glut, which has occurred, not only be-
cause of the amount, but also because of the type of
data being collected (generally spatial and most often
continuous in nature such as images, maps, two and
three dimensional drawings and figures).

This information glut is growing nonlinearly, and is
expected to continue to grow in this fashion for the
foreseeable future. Consequently, it is bemming
physically and intellectually impossible to identify,
select, and access the most suFtable information
specifically applicable to the various engineering and
research projects of interest. For example, in the
earth sciences such vast amounts of data are now
being collected and/or are available (e.g., satellite
images) that it now exceeds the ability of all the
professionals in the field to process, manage and

study it. In addition, the number of professionals in
the application disciplines is not expected to in-
crease signi f i i ly enough to resolve this data
problem in the foreseeable future. Thus, the dilem-
ma arises that the amount and Complexity of infor-
mation has exceeded and will continue to exceed,
using present information systems, the ability of all
the scientists and engineers to understand and take
advantage of this information.

Based on the scope, expected growth and domin-
ance of this problem, it is anticipated that the future
ability of NASA to function and perform meaningful
space and earth related research will be significantly
affected by its ability to manage and use its collected
information to derive knowledge. Consequently, it is
envisioned that dramatically daferent approaches to
data management will need to be taken if earth and
space related operations and scientific investigations
are ever to take full advantage of the information and
data being collected and stored.

Considering the trends of present computer science
technolsgies it would appearthat an approach to
data management that employs Artificial Intelligence
(AI) technologies coupled in a distributed environ-
ment with powerful super micro computer based
workstations, offers a reasonable solution to resol-
ving many present and future data management
problems.

2.0 BACKGROUND

In October of 1984 Goddard Space Flight Center's
National Space Science Data Center (NSSDC)
initiated a research effort to develop a new genera-
tion of data management technologies to support
the needs of NASA's future operational, engineer-

%

ing and scientific programs through the beginning of
the twenty-first century. This research effort is the
intelligent Data Management (IDM) Project. The
Project's long term research goals are as folbws:

to develop very powerful database manage
ment systems using advanced generation
technologies,

to develop intelligent value-added services
that will enable users to interact with the most
complex database systems with minimal
understanding of the systems architecture,
stored data, or query language,

to allow automatic data ingest and main-
tenance with minimal user guidance and
interaction,

0

to manage symbolic (characters and letters)
and spatial data in the same database systems.

The IDM Project has been organized to address, sim
ultaneously, those areas of data management that
could potentially be improved by the applications of
artificial intelligence technologies including:

0 User Interfacing,

System management and control, - Spatial database management,

Automatic data ingest and system
maintenance,

Advanced database systems using AI design
concepts (Le. dynamic database systems).

A top level diagram of the IDM concept that includes
each of the above areas, except dynamic database
systems, is shown in Figure 1.

0

After careful consideration of the operation of data-
base systems, it was determined that the develop
ment of an intelligent user interface offered the best
chance for near term success while at the same time,
providing technical direction for most of the other
services in the overall concept. It was envisioned
that a dahase enhanced with a functioning IUI
Subsystem (IUIS) would enable scientific and sup
pading (nondatabase) technical users to access and
use the stored informath with little or no under-

-PROCEDURAL& HEURISTICALKNOWLEOGE

HIERARCHICAL ABSTRACTION OF IERARCWCAL ABSTRACTION OF
META INFORMATION SPATIAL INFORMATION

Figure 1. The Intelligent Data Management Concept

9

standingof the database's archilecture, the actual
data content or the system's query language.

This paper presents the results of a research and
development effort related to user interfacing, called
the Intelligent User Interface (IUJ) task.

It is believed that the development and implemen-
tation of a prototype IUI subsystem will not only
demonstrate the concept of applying artificial Met-
ligence to data management, but will also enable
NASA to assess the long term applicabiliiof AI tech-
nologies to its future data management needs.

representation of the data-

to the casual user,

It can be used to facilitate the understanding and
identification of database information from the
database operational view to the user related
viewsbytheuseofconceptualgraphsthat
translate between the database's meaning and
the user's meaning of data and sets of data,[q

3.0 INTELLIGENT USER INTERFACE CONCEPT

The IUI, as envisioned, is a system that will "serve as
an intermediary between a database and a user" who
has little or no knowledge of the database's architec-
ture, language, orcontent.[11

Such an interface would allow the user to operate a .
database (which means locating, identifying and
selecting specific information) in the context of a
user's particular knowledge domain, and to do so
using a communications medium that is most suitable
to the user, such as the user's natural language (Le.,
English). The advantages of such a concept are that:

It can facilitate understanding by specifying the
contents and meanings of a collection of data as
well as the relation between objects within the
data,[4

It will be able to support approximate reasoning
to infer conclusions that are not explicitly stated
by the user, such as an imprecise or fuzzy query
which can be stated without mentioning file
names or table joins,

Fuzzy concepts can be expressed by using a
funy query,

It will be able to handle information demands for
which the database is used routinely, rapidly and
efficiently without any understanding by the
user,

It will be able to communicate with the user in
plain English text,

It will serve as the semantic basis for understan-
ding the user's data needs in conjunction with
the natural language query system,

m It will provide a physical and logical link between
~ o ~ ' ~ c o n t a i ~ inthe metaknowledge
database and the spatial database in the overall
IDMconcept.

To support such a deslgn concept, two ideas need
to be developed. First, the creation of multiple views
of the database that are both functionally appropri-
ate, from the perspective of a nonexpert database
user, while at the same time operationally necessary,
fromthe database's perspective, for supporting the
physical storage and management of the data.
Second, the creation of a means of moving from one
type of view to another using conceptual graphs14L
basedon logical inference statements (Le., rules).

A singularly important feature of such a concept is its
role as a mediator between the user and the data-
base and its ab i l i to deal with the dual i of the
views (or contexts) that must be contended with in
order to support both the integrity of the database
with its data and the user's understanding of the data
and information needs. Using such a concept the
lUlS would be able to deal with a user based on hls
syntax and understanding of the objects in the
database, and at the same time understand the data-
base's viewpoint, based on the physical and opera-
tional organization of the data and the relationships
between objects within the data.

Based on our present understanding of database
operations, as wen as our reading of the supporting
literature, it would appear that there are at least three
types of views required for a functionally complete
IUIS. These views are:

Archilectural view,

Multiple application views,

Operational view (the database design model

The last view, or database operational view, exists

which can be relational, network, etc.).

10

because of the fact that the database exists. And
consequently, ths view is important because it is this
view that all other views must translate to, in order to
get information from the database.

Based on the premise that the design of the lUlS
requires an awareness of all of the above types of
views, one can postulate a model that considers
such views collectively linked by intelligent
processes which translate between the views. Such
a model is shown in Figure 2., and, as one can
observe, the primatyfunction of the IUlS is to
translate between the various database views and
the user in a fashion that best supports the user's
needs. An important observation about the model is
that the operational view must be included as part of
the model even though the view also exists outside
the model as the database management system.

3.1 The Intelligent User Interface
& DatabaseViews

The multiple view concept upon which the lUlS is
based is an enhancement of an earlier database
design concept involving what was alluded to as an
external level of a database's architecture. This idea
of the external level of design is presented very

clearly in a popular text book by C. J. Date which
descnies a database architecture as being divided
into three levels: internal, external, and concept-
ual. 19 The internal level is the one concerned with
the way data are stored and, is the dosest to physical
storage; the external level is the one closest to the
user's understanding of the data; and, the concept-
ual level is a "level of indirection" between the other
two levels.

In the context of the IDM concept the intelligent user
interface serves as a conceptual level process that is'
able to provide powerful indirection by being able to
deal with the user using his own syntax and bgical
processes while at the same time understanding the
database's design, data content and query lang-
uage.

h e lUlS concept model shown in Fgure 2. is based
on two types of views to support the conceptual
level: an architectural view and multiple user appli-
cation views. However, because of the broad defini-
tions that can be given to the two typesof views, it is
necessary as part of the design formulation to spe-
cifically limit their scope so as to avoid the uncertain-
ties and ambiguities that can occur when considering
database concepts.

I

DATABASE

WCUATXc*Iu. TO - APRJ-IC%TIM
TIuIIsroma rxm!ca .MIST- r x m

DATABASE ARCHITECTURAL DATABASE
APPLICATIa V I E W

(WEILT TEE EXPERT USER

I Fgure 2. IUI Concept Model

11

In the context of-the lUlS concept, the architectural
view is defined to be a logical taxono-m ofihe
database's organization that includes the relation-
ship of the objects withinthe database that relate to
the general knowledge and information that an
expert user might have about the database. This
view is organized to minimize processes that a user
would apply when trying to locate a partiarlar object,
or the relationship between objects.

The architectural view is similar to some existing
database design concepts but with two major differ-
ences. The first difference is that the objects and
the language which are used to describe the objects
in the architectural view are based on the user's
language and understanding of the information of
interest. The second difference is that this view may
contain objects which do not exist as real data
objects in the actual database. Such objects are
known asvirtual objects (objects that result from the
clustering of real data objects).

The second view, the applition view, is defined as
being that view which is very domain specific and
includes all the knowledge, facts and metaknow-
ledge that would be known to the expert user
working in a particular technical area for which the
database has been designed to support. The
application view will include three different types of
knowledge and facts:

.

Heuristic knowledge related to obtaining
particular information for a specific application.

Procedural knowledge that is used by an expert
user to obtain information from the database for a
specific application.

Virtual objects that are known by the expert user
as part of a specific application.

It is to be expected that there will be different user
application views for different areas of database
expertise. Because of this, it will be particularly
important to formulate an lUlS design that will be
capable of easily representing and modeling an
"expert" user's knowledge of the meaning of the
collected data Such information will enable the
expert system to include functional and semantic
interrelationships among database entities, domain
specific attributes, as well as content descriptions of
ObjWtS.

The effect of the multiple view approach on the
development of the IUI model is that, when it is
integrated with a database there will be two basic
schemas of the database: one which is aconceptual
schema and one which is the database architectural
schema (Le., operational view).[q Both are neces-
sary for a complete description of the database. .
3.2 Conceptual Graphs

The use of the conceptual graph in the intelligent
user interface process is presented in Figure 3. To
better understand the application of the conceptual
graph to the database problem, the following

DATABASE VIEW
(RELATIONAL)

A CONCEPTUAL GRAPH
(EXPERT SYSTEM)

CONCEPTUAL SCHEMA

4

USER VIEW

Figure 3. Representation of a Conceptual Graph

12

example is presenteh

In the Crustal D amics Project's Data Information

the NSSDC to support the storage of collected and
analyzed crustal motion data from sensing stations
located at many sites over the entire earth's surface.
The users of the Crustal Dynamics database fall into
two classes: engineers and scientists. The latter
group is primarily interested in the database in the
context of the study of the motion of the earth's crust
and in earth rotation. The area of science related to
crustal motion is commonly called plate tectonics. To
get the necessary information related to plate mo-
tion, an expert database user must query the data-
base about a specific set of stations, calculate the
chord between them for a specific period of time and
then determine the slope of the chord.

System (DIS) [x , a database has been developed at

However, the objects, the chord and its calculated
slope are not objects stored explicitly by the data-
base. Therefore, the only wayto determine a specific
plate's motion is to identify the stations that are
located on the specific plate and measure the motion
of those stations with respect to stations on another
plate (i.e., baseline measurements). Thus, there
exist data objects needed in the identification and
selection of the appropriate database information
that do not exist in the actual database. It is left to the
experienced database user (Le., the expert) to
understand and know how to calculate the chords
between stations and their slope.

In the IUI concept, such missing information is taken
into account so that, when information about a spe-
cific plate's motion is wanted, the IUlS knows how to
calculate the motion based on the type of sensing
system used (SLR or VLBI)[q. To the casual data-
base user, this intellectual transformation will be
transparent. To the lUlS developer, this transfor-
mation is in fact the conceptual graph which facili-
tates the understanding of the meaning of objects in
the context of the user's needs, and translates those
objects into different objects with meaning to the
database. In the formulation of the IUIS, one of the
primary functions of the expert system is the creation
of such conceptual graphs.

Consequently, a conceptual graph can be said to
facilitate the understanding of the meaning of ob
jects in the context of the user's needs, and translate
those objects into different objects that have mean-
ing to the database. In thefomwlation of the IDM
concept, one of the primary functions of the expert
system is being able to create conceptual graphs.

(domain specific) and the database management
system's view of the data using expert knowledge.
This path is, in fact, an expert system and is
illustrated in Figure 3.

3.3 The Application of Expert Systems to the lUlS

The basis for the design of the lUlS is the hypothesis
that, an expert system can be developed that is able
to reason about database information, both from the
usefs view and from the database's view, in such a
manner as to intelligently identify and select required
information with only limited guidance by the user. It
is the job of the expert system to capture all the
necessary knowledge about the structures and con-
tents of the various views of the database and to
support the translation between the views. Such an
expert system will actually emulate an expert data-
base userwithin the limited expertise domain.

The decision to use an expert system as the opera-
tional environment for lUlS software is based on the
following considerations:

1. A database has a finite and rather limited
knowledge space which makes the
development of an expert system possible.

2. Certain important operations that are performed
by an expert database user are based on
heuristics (Le., search strategies used to find
information based on past experience).

3. Although a database has a large number of
potential data sets available, the actual number
of sets is usually limited to a small number,
compared to the large number of data objects
that cwld potentially be extracted from the
database.

4. Many of the operations performed by the expert
user are procedural in nature.

5. Expert system development tools, especially the
advanced ones that employ frame representa-
tion schemas (Le., LISP with flavor extensions),
allow not only the implementation of multiple
database views but also the construction of a
logical taxonomy of objects in the database and
the subsequent reasoning about such views
and objects in a very robust fashion.

13

PROSPECTOR

kinds of problem solving
successfully used in the
can also be applied to this development effort. Also,
the ability to construct expert systems as conceptual
graphs is based on the finite knowledge and syntax
domains of a database.

The impact of the above assertions is that, it should
be possible to develop intelligent processes for the
IUlS using expert development tools for any devebp-
ment effort.

4.0 lUlS PROTOTYPE DEVELOPMENT

A phased approach was used to develop the first
IUlS prototype so that each of the lUlS processes
(database views and transform filters) could be
completed, tested and evaluated independently
before they were integrated into a system. The
prototype system was named CRUDDES (CRUstal
Dynamics Database Expert System) after the data-
base it was built to support. The tasks used for the
development of CRUDDES are as follows:

1.

2.

3.

4.

5.

6.

7.

a.

9.

Database Selection Evaluation and Character-
ization.

Evaluation of the use of the database by
expert users.

Fomation a prototype IUlS concept and
develop near term system design,

Formulation and devebpment of the
application view.

Fomwrlatkn and devebpment of the
architecturalview.

Development of transform filters for the
application and architecfural views.

Interface the application and architectural
views' transform filters to the NLQP.

Customize NLQP to support the application
and archit views.

Develop transform filters to support the
translation between the application view and

the mhiiectural view.

into a single knowledg
10. Integrate the trakform filters fro

In the following sections the first eight steps of the
development effort are discussed in detail.

4.2 Database Selection, Evaluation And

The database selected was
port the Crustal Dynamics
which was i lemented in
DBM$1d?consistedof 104tablesthat suppor-
ted the management of data related to the motion of
crustal plates and earth rotation.

The reason for selecting a relational DBMS over
other fypes of database models is the simplicity of
design from both the database view point and the
user's view point. However, no matter whch DBMS
was selected, we felt that it was necessary that the
system be supported by a natural language query
interface. The reason for such a requirement is that
formulating a desired database query in English is a
much less complicated problem for an expert system
than trying to reason in English and then translating
to a query language like SQLI1% [I 9
The evaluation and characterization of the Crustal
Dynamics Project database was performed by
creating an Entity Reiationship (UR) 11 s] diagram,
which is commonly used in initially designing a
relational database. In addition to creating the UR
diagram, it was necessary to develop a logical
taxonomy of the objects in the database using an
approach that is commonly found in a thesaurus.
This developed logical taxonomy, along with
conversations with the expert users, helped us
identify virtual objects.

The result of the evaluation of the database was the

nagement data Because
CRUDDES was a prototype, it was decided to deal
only with the first two data classes, namely site data
and experimental data, and to do so in two separate
steps.

4.2

This task of the development effort involved the

n of the Use of the Database by The

14

application of knowledge engineering techniques to
determine how the database was being used by the
application database experts. Two scientists that
support the Ctustal DynamG Project were identified
and contacted in regard to collecting information
related to the actual use of the pmject's database.
The scientists were interviewed on several o m -
sions and, based on the interviews, three domain
specific application views were identified

Scientific applications,

Engineering applications,

0 Projedmanagementappliiions.

4.3. IUS Prototype Design Formulation

With the three application views identifii, from the
expert user, it was then possible to formulate a
design for the initial prototype IUIS. The design,
which is presented in Figure 4. consists of the
scientific application view and the architectural view
and is based on two sources of information: first,

.from the information gained during the task3 effort
and second from the interviews with the expert users
in task 4. The basis for the design are the concepts
discussed in Section 3.

4.4 Formulation and Development of the
Application View

After the overall prototype design had been final-
ized, further interviews with the expert users were
conducted to enable the development team to
understand in detail how the database was utilized to
support the development of the appliiion view.
The result of these interviews was a design concept
that decomposed the scientific appliition view into
two subviews: plate tectonics and earth rotation, and
then each Of t k 8 subviews into specific sets of
information extraction goals. For the subview "plate
tectonics," the infomtion extraction goals were:
whole plate motion, regional deformation, and plate
stability: and for earth rotation: polar motion (preces-
sion) and rotational velocity. Each of the liied infor-
mation extraction goals were further affected by the
application of necessary modifiers such as year, site

nt method. However, even

appeared that the development of a scientific applica-
tion view would be a fairly straightforward process

that could implemented using expert system devel-
opment toots, as envisioned.

During ths portion of the development effort it be-
came apparent that, more consideration would have
to be given to the prototype design. JnitialJy it was
thought that, the application view could be devei-
oped separately from the architectural view; how-
ever, it became apparent that a single view lacked
the minimum amount of necessary information that
would be required to assist the nonexpert database
user. The reason for this conclusion is that, non-
expert users understand little about the information
in the database and consequently, might think there
was, or should, be additional information extraction
goals than had been provided. In other words, the
IUIS has to be able to accommodate forthe "I don't
know what to select" response. This adddional
c o m p l i i n resulted in the development of a
design that attempts to resolve what view best
serves the usets needs, which became the context
resolution process in the system. The resolution of
what was the proper view for the user could only be
assured by concurrently providing both the applica-
tion and archtectural views. The resultant design is
presented in Figure 4.

The final step in this task was to determine all of the
possible combinations of unique data extraction
goals (the database objects with their wherefore
clauses) required to get the desired information from
the database for the scientific view.

After all the information extraction goals for the
scientific domain (application view) had been iden-
tified and characterized, and a strategy for resolving
view conflict resolution determined, it was then
possible to develop a knowledge base using the
expert system development tool. The goal of the
first expert system was to support the automated
reasoning required in the determination of desired
data objects in the science appliition domain for a
nonexpert database user. Such a determination was
to be done in the context of the various information
extraction goals available in the scientific application
view orwhere applicable in the arctriectural view.

The development of the first expert system required
about six weeks of effort and only dealt with the
knowledge area involving plate tectonics. The sys-
tem inference process was based exclusively on

ning and dealt with the various alter-
native selections available in the query fomwlation
process by using generalized rule forms with vari-
ables. The expert system, in a planned structured

15

selection process, identified the various compon-
ents that would make up aquestion and instantiated
them into the variables where rules were used to
construct the desired English question.

4.5 Formulation and Development of the
Architectural Vlew

The development of the architectural view of the
database is based on the premise that it is necessary
to provide to the user a generalized view of the data-
base which is a logical organization of the objects
that exist in the database and their relationship to
each other. Wth the knowledge gained from this
view, one should be able to identify information that
is not available through the other views (application
and functional) or an extension of an already avail-
able application formed query.

As discussed previously the primary reasons for
having an architectural view is to support the "I don't
know what I want" condition that one can ex- a
new database user to default to. The approach
taken in designing the CRUDDES architectural view
was based on the concept of object relationships
that would be required if one were developing the
view using a frame based expert system. The
decision to use a frame type organization was the
result of an initial development effort that organized
the database into a tree structure.

The impact of selecting the frame over the tree ap-
proach was two fold; first, it provided the most
complete relationship organization possible includ-
ing virtual objects, and second, it makes the view
reasonably easy to port to a new expert system that
is being acquired as part of the FY86 project effort.

The organization for the architectural view consists of
the database world as the highest level object with
every other ob* being a component of that object.
The next level of decomposition in the architectural
view is site information and experiment information.
At this level, objects are clustered by their relation-
ship to the ordering. The beauty of this type of view
structure is that when inheritance is considered,
objects will be able to receive new attributes by the
very fact that features have been added to objects at
lower levels. Thus, inheriiance allows a system to re-
spond as if & were teaming automatically.

The development of transform filters that would
function as the interface between the architectural
and the operational views did not require a great deal

16

View were very similar to those developed from the
application view to the operational view, with the
result being that, once the object and cluster object
relationship was determined, it was only a matter of
creating the necessary rule base to provide a
functioning transform filter capability.

4.6 Transform Filter Development to the
Operational View

In this task identified objects were translated from the
application and architectural views to objects that
exist in the operational view and then translated into
a syntax that could be understood by the database
(SQL) .
The first translation process is one of the most
important components of the IUI concept because,
this is where the expert database user is necessary
in order to translate from what the user understands
and needs to what the database understands. This
conclusion is based on the hypothesis that, there
exists in the application and architectural views many
objects that do not exist singularly in the functional
view. These consist of the clustering or grouping of
several objects that exist in the functional view. It is
this expertise, along with the procedure knowledge,
that is required to form the proper query that signifies
the expert database user. In the prototyping of
CRUDDES, such knowledge was identified and
captured in the expert system.

4.7 Interfacing the Application and Architectural
Views to the NLQP

The important contribution of this task effort wasZhe
appreciation for the robustness of the English lang-
uage in being able to formulate, in a very compact
way, an expression that communicated what inforrna-
tion is desired. It would appear that, when dealing
with or reasoning about an object (or information
about the object) that exist in a domain specific
space, it is best to formulate the questions in the
context of that domain using the syntax applicable to
the domain. The result of this conclusion for the lUlS
design is that, it is best to stay in an object's concept-
ual domain until the entire query expression has
been formed and only then translate the question to
a database query using its language.

Figure 4. IUlS Prototype Conceptual Design

17

The custombation of the natural language query
processor, THEMIS, was a very simple and straight
forward process because the system is a functioning
commerical product thathas been built to support
rather large and complex relational database sys-
tems. In addition, since CRUDDES is a prototype
system that deals with only a portion of the selected
database, the number of English queries it is capable
of generating is rather small. Consequently the
dictionary of lexicons that had to be added was also
rather small (due to the limited number of information
goals coded into the knowledge base).

However, because the IUS had to be able to resolve
ambiguity in the user to system communication,
special attention was paid to the formulation of
English queries on the CRUDDES side and their
response on the database side.

As the CRUDDES system expands, the abilii of the
NLQP to deal with imprecise queries may become a
more important issue and consequently, how the
system will deal with impreciseness is unclear.
However, in the long term, it would appear that, any
IUlsystem must be able to understand the user
based on more than syntax. Presently, machine
understanding at the context or semantic level of
abstraction is quite difficult if not impossible to
implement and it may turn out that the most difficult
lUlS development problems will involve English
understanding.

5.0 SYSTEM PERFORMANCE & PROJECT
DIRECTION

The last two tasks in the prototyping of the demon-
stration system are presently under development.
However, we feel that their completion will not have a
significant effect on the results of this effort. The
reason for this assertion is that their inclusion into the
system can only improve its performance and not
change its abilii to fundion as a substitute for the
expert database user, which it already does to some
degree.

The system's ability to support inexperienced
database users and scientists was tested over a
short period of time with people of varying degrees
of database skills. The results were quite pleasing in
that in most cases, except when the user was very
knowledgeable with the database and its operation,
the system was able to significantly reduce the
amount of time that would be necessary to obtain a
specific piece of desired information. In fact, except
in a very few instances. the SQL auew resultina from

one user's interaction was clearly beyond his tech-
nical ability to generde it in the normal fashion. Thus
it appears that an IUI system allows even the most
inexperienced user to function like a database
expert, armed only with his knowledge about the
technical domain of interest.

Given the above we believe that CRUDDES has
demonstrated that it is possible to develop and
implement intelligent value-added services to
database system, that are capable of interacting
with, and fully supporting the nonexpert database
user, in specific domains of interest. In addition, we
believe that such a system will be able to function at a
level of performance and understanding, that can
only be rivaled by the experienced expert user, with
working knowledge and experience with information
with the information contained in the database.

Thus it now appears that we have the technical basis
to begin the design and development of the next
generation IUI system, which when married with more
robust software and hardware should be able to
function very effectively in many NASA operational
database environments where research scientists
need better data management support.

REFERENCES

[l] Shi-Kuo Chang, Jyh-Sheng Ke, "Translation of . Fuzzy Queries for Relational Database Systems",
IEEE Transactions on Pattern Analysis and Machine
Intel/iQence, Vol. PAMI-1 , No. 3, July 1979.

[2] ibid.

[3] Carqpbeli, W. J., Roelofs, L. H., "Artificial
Intelligence Applications Concepts for the Remote
Sensing and Earth Science Community"
,Proceedings ofthe IX Pema Conference, IEEE
Publication Catalog No. 84CH2079-2, October 2 - 4
1984, pp. 232.

. [4] Sowa, J. F. "Conceptual Graphs For A Data Base
Interface," ISM J. Res Develop., July 1976.

151 Date, C. J. "An lntroductlon to Database
Systems", Third Edition, Addison-Wesley Publishing
Go., Reading, MA, 1981 , pp. 13 - 17.
161 op. cit., Campbell, W. J., Roelofs, L. H., "Artificial
Intelligence Applications Concepts for the Remote
Sensing and Earth Science Community"

[A Noll, C. E., "The Development of Selected
Database Applicationsforthe Crustal Dynamics Data
Information System, NASA Technical Memorandum
83886, December 16,1981.

[8] ibid.

[9] Buchanan, B. G., Shortlie, E. H., "Rule-Based
Expert Systems, The MYCIN Experiments of the
Stanford Heuristic Programming Project," Addison
Wesley Publishing Co., Reading, MA, 1984.

[lo] Duda, R. O., Gaschnig, J. G., Hart, P. E., "Model
design in the PROSPECTORconsultant system for
mineral exploration," In. D. Machine, ed., Expert
system in the micro-electronic age. Edinburgh:
Edinburgh Univekiity Press, pp.153-167,1979

[l 11 "SQYUFI Reference Manual, Version 4.0,"
ORACLE Cop, June 1984, D002-0684-840521.

[i 21 Codd, E. F., A Relational Model of Data for
Large Shared Data Banks," Commun. Ass. Comput.
Mach., Vol. 13, June 1970.

[13] op. cit. Date, C. J. "An Introduction to Database
systems", pp. 73 - 81.
11 41 Denny, G. H. "An Introduction to SQL A
structured query language,", IBM Tech. Rep.
RA93(28099), May 1977.

1151 Chambertin, D. D., Boyce, R. F., SEQUEL: A
structured English query language," ACM-SIGMOD
Workshop on.Data Description, Acxess, and
Conttul, May 1974.

[lq Chen, P. P. S., "The Entity-Relationshp Model:
Towad a Unified View of Data," ACM Trans.
Database Syst.. Vol. 1 , pp. 946,1976.

19

AI Goes FORTH*

W. B. Dress
Oak Ridge National Laboratory

PO Box X, Oak Ridge, Tennessee 37831

Abstract

The Forth language is presented as a vehicle for developing applications
constrained by real-time considerations and size of hardware system. A
specific example of rewritting OPS5 in a multitasking version of Forth
shows that such applications can be extended to the realm of problems
requiring a real-time artificial intelligence approach. The goal of high-
speed, intelligent software operating in a restricted hardware environment
is thus attainable in a cost-effective manner.

Introduction

Artificial intelligence is a set of methodologies and a philosophy. In this paper we
will be concerned with the methodologies. AI will be taken as the art and science of
making computers more useful to humans.l The methods of AI include those techniques
(e.g., recursion), algorithms (e.g., search schemes), and paradigms (e.g., declarative
languages) that promise to further the goal of usefulness in specific applications. A
particular language (e.g., LISP) is merely a means to an end--it is neither the goal nor
the embodiment of AI philosophy.

In moving from the ivory tower to the worlds of industry and applied science, AI has
found a need for another property--that of performance. In the past performance in AI
has meant running LISP a little faster, but since AI is not equivalent to LISP, this is a
narrow view of performance. This paper will hint at a broader definition of performance--
an application oriented definition--and examine performance-related features such as
code volume, execution speed, and programmer productivity. Ideally, AI has been a
software endeavor--ideas and examples have been independent of any particular
hardware implementation. When performance becomes a necessity, this ideal view will
have to change. For example, parallel hardware architectures are necessarily dictating
software architectures. A danger is that this approach can lead to some awkward
software, just as hardware implementations of software ideas (e.g., procedure calls) has
led to some very awkward hardware. Similarly, the new super LISP chips may codify the

. dubious identification of AI as LISP--another example of hardware determination of
software methodology.

TResearch performed at Oak Ridge National Laboratory, operated by Martin Marietta
Energy Systems, Inc., for the U.S. Department of Energy under Contract No.
D E-AC05-840 R2 1 400.

Another philosophy, one of an integrated approach to hardware and software use,
will provide the framework for exploring AI applications requiring the added dimension of
high performance. That philosophy, currently evolving in practice and definition, is
embodied in the computer language Forth.

FORTH as a Vehicle for AI Applications

Forth has long been recognized (perhaps surreptitously) as a tool supplying
performance and economy, particularly for dedicated control applications in which speed
of response and efficient use of hardware resources are crucial. However, recognition of
its inherent expressivness as a vehicle for high-level application languages is fairly
recent;2 it is this property that we will examine, both from an historical perspective and
through a specific high-level language example.

What is FORTH?

Like other modern high-level languages, Forth is recursive in nature (i.e., it is written
in Forth and one program can be data for another program). Forth gives the user
mastery over the underlying hardware, be it memory, registers, mass storage, or
com munications ports.

A fundamental difference from other computer languages is Forth's extensibility.
Most modern languages are extensible in the form of user-defined subroutines,
functions, and macros. Extensibility in Forth radical--the language itself can be extended
at the whim of the programmer. The user is able to redefine keywords both cosmetically
and functionally, take control of the interpreter and modify it for specific needs such as
parsing or stream processing, and define application-specific data structures of any
desired complexity including object-oriented and access-oriented structures.

Some of the multiparadigm languages becoming available3 have all of the features
deemed necessary by their authors for AI applications and, as such, are undergoing
continuous development and redefinition with no definitive version in sight; new super
features must always await the next release of the operating system. Alternatively, Forth
programmers must reinvent the wheel each time a special construct is needed, and this
is Forth's weakness and strength. (Remember why we are examining this language: for
its use as an application-specific language for attaining high performance.) If a
language extension is not needed, it doesn't get in the way of the programmer and the
application. Forth considers data structures and language extensions the way C
considers functions--they belong in a library where they can be used or ignored as
desired, thus having no impact on the compiler and on ultimate system performance.

Forth is a weakly typed language, words (subroutines) and data structures have no
pre-imposed interpertation. if the programmer wishes to add an integer to the address of
a subroutine, there is nothing to prevent it. A more general view is that everything in
Forth is typed by its behavior--that is, each word contains a reference to a particular
system- or user-defined behavior specified at the time of definition. Thus it is possible to
execute a data structure if it is so defined. An example would be an array containing the
bitmap of a graphics object to be displayed. Normally, the array is passed as an

21

argument to a subroutine which then maps the information onto a display. In Forth,
merely referring to the array by name invokes its behavior (maps the object it contains
onto a display screen). The advantage is conceptual as well as functional. This
technique leads to compact and efficient code where the behavior of the object is
specified once in the vocabulary (as is a subroutine in an on-line library) and is never
explicitly mentioned to invoke its behavior (this is the defining word4 construct).

Applications development benefits from this "on-line subroutine library," which is
developed in an interactive manner Si la rapid-prototyping methodology. As each
module is conceived, written, and verified, it is added to the set of immediately available
(and previously verified) modules in an interactive and incremental manner. There are
two immediate benefits from this approach: one for the programmer who is no longer
bound to the edit-compile-link-debug cycle for each incremental change, and the other
for the application which shows a reduction in code volume and concomitant savings in
memory use and power consumption for the final system.

Once an application has been developed and globally tested, time-critical areas
may be identified and rewritten in assembler code without the need for rewriting or even
recompiling the application. Another feature allowed in many systems is writing
assembler code inline with high-level code and vice versa. Time-critical loops can be
encoded for efficiency without leaving a high-level definition, and assembly code can
refer to and call high-level constructs. Thus Forth retains the nature of a high-level
language while allowing the performance usually associated with C.

FORTH and AI

Recently, some Forth programmers have been solving problems traditionally
thought of as AI applications. Some of the solutions were arrived at independently of AI
methodologies, and some were conscious applications of AI methodologies. Some of
the many applications and studies carried out in Forth, but which have a direct bearing

Several upcoming papers are particularly worthy of mention as having a freshness
in their approach and a timeliness in their subject. One pape6 suggests using the
dictionary and vocabulary structure as key elements in a natural language parser while
creating the demons useful for disambiguation via defining words. Another paper5
shows how to create an inference engine that considers any specified word (routine) to
be a production-system rule as long as it returns a truth value when invoked. This
engine ran a rule-based Towers of Hanoi in 9.25 s for 10 towers (32-bit Forth on a
MC68000 at 10 MHz). A straight Forth or LISP implementation of this benchmark is
much faster, while an OPS5 running on a high-end LISP machine took more than 140 s.

The topic of this year's Rochester Forth Conference in June is real-time artificial
intelligence, systems, and applications. Among the papers to be presented6 are a
Forth-based Prolog for real-time expert systems, a real-time interpretation of shuttle data,
and applications of AI to process control.

It is apparant that AI and Forth have much in common in the area of real-time
applications and high performance. The following discussion shows how Forth can be
used as a high-level assembly language for writing application-specific languages--even
one as rich as the widely used OPS5.

on the problems of AI, are mentioned below. \

22

Making OPS5 Real Time

OPS5 is a syntactically and conceptually simple expert-system language developed
at Carnegie-Mellon University by Charles L. Forgy7 in the early 1980s and is a
rule-based (production system) language. Programming conceptually consists of
encoding procedures, declarations, and heuristics in forms resembling an IF ... THEN ...
statement. The conditional clauses making up the IF or left-hand side (LHS) portion of a
rule are known as condition elements and are patterns of desired data to be matched by
actual data instances. When the set of condition elements in a rule is satisfied by
corresponding instances in the data world (working memory) of the OPS system, that
rule is satisfied and is free to "fire," carrying out the actions specified by the collection of
THEN clauses on the right-hand side (RHS) of the rule. Since each rule is an
independent module, the complexity of OPS5 is considerably less than that of Pascal or
an extended Basic. The organization of a program into discrete rules that are logically
-and functionally independent provides a modularity necessary for the successful
maintenance of a complex software system. A well-written OPS5 program is more
readable and less complicated than a comparable Fortran or Basic version.

A major characteristic distinguishing OPS5 from other inference engines is the Rete
algorithm,8 which is responsible for the efficiency of the pattern-matching cycle. This
algorithm maintains a set of pointers from actions to condition elements. Only those
condition elements that change when a working memory element is added or removed
need be notified. This obviates a need for rematching each LHS pattern to all of w0rkin.g
memory for each cycle.

OPS5 is primarily a data-driven or forward chaining system. Evolution of the expert
system toward its goal is determined by the current state of the data set. Goal-directed
controlling strategies can be imposed easily by a set of OPS5 rules. A complex control
problem usually requires understanding large amounts of data, so an OPS-like
language may be essential for the sensor fusion problems gaining importance in space
and military applications.

In summary, an OPS5 program is a set of rules consisting of patterns to be matched
and actions to be effected. If all of the LHS patterns of a particular rule have consistent
instances in working memory, the rule is free to fire, executing the actions specified in the
RHS. The actions typically make and remove working memory elements, thus affecting
the satisfied status of other rules in a ripple effect.

Rewriting OPS5 for Real-Time Applications

We now look at Forth as a rich and powerful assembly language for rewriting the
expert systems language OPS5 in a real-time, multitasking environment. A radical
reworking of the OPS5 infrastructure is required to retain the syntax and basic algorithms
while allowing multitasking and the immediate inclusion of real-time data for
consideration by the rule set. An essential requirement is that access to the system's
underlying hardware be kept as close as possible to the top-level OPS rules. Such a
feature is necessary for successful real-time operation. The language chosen for this
project was a multitasking version optimized for the Motorola 68000 microprocessor and

23

the Hewlett-Packard Series 200 desktop c~mputer .~ The only portions not portable to
other computer systems are those parts dealing with the specifics of the Series 200
hardware (timers, operator interface, and file system).

The task of rewriting OPS5 consists of implementing the syntactical rules of OPS5,
writing code to build the network (Rete algorithm implementation), creating a memory
manager for the working memory data, and building the necessary user interface.

Syntax and Parser

A standard method of enforcing a syntax is to build a position-sensitive parser that
identifies the reserved words of the language. The parser must keep track of the "parts of
speech" and distinguish among various uses of the same symbol. Since the syntax of
OPS5 is relatively simple, a straightforward state implementation sufficed.

The state parser consists of a special vocabulary for accepting symbols from the
input stream and activating code sequences for compiling the corresponding data
structures (class objects and rules). For example, STATE changes the parser state and
pushes the new state onto a "lifo" stack; PRlORSTATE pops the current state off the
stack and changes the parser to the one previously specified. Also, a number of

changing the state by calling the routines that build the data structures. Each parser
state is responsible for a different portion of the rule being compiled, so changing data
structures or adding new features is a simple matter of modifying the appropriate parser
module.

The data structures built by the parser were chosen for speed and flexibility, not
generality. Both Forth and OPS5 are weakly typed languages, so optimizing data
structures for special cases is a simple matter of definition. This feature resulted in
considerable savings in memory usage and processor cycles, allowing more specialized
data structures than in standard OPS. However, the number of conditions per rule and
the number of attribute slots per condition element have been limited to 32- This is not
as restrictive as it might appear; the typical OPS program has an average of six
conditions per rule and five attributes per condition.1°

State-SpeCifiC words (Such as RULE.STATE, WRITESTATE, etC.) actually do the work Of

Managing Memory

A special memory managerll was written to handle the multitude of dynamic lists
required for the internal bookkeeping of the OPS5 inference engine as well as the
working memory and real-time data elements. In keeping within the constraints imposed
by real-time operation, long and unpredictible memory-cleanup pauses are avoided by
requiring that the memory pool be kept in its compacted form at all times. Thus when a
data structure is no longer needed, the memory space it occupied is returned to the pool
of available memory in a manner avoiding fragmentation and unusable gaps. This
method of synchronous garbage collection overcomes the problems in herent in the
usual method, which can be fatal for a real-time application.

24

Running the System

The standard OPS recognize-act cycle has been modified to allow for a rule-priority
scheme and multitasking. Thus, the rule with the highest priority is allowed to fire first; if
no rules have priority, then the usual OPS5 conflict-resolution strategies are employed.
If no rule is able to fire, the system pauses before re-examining the conflict set. Although
this last step makes no sense in the usual context of OPS5, in which firing rules or
console input are the only sources of new working memory elements, it is essential in a
real-time version. The pause lasts a few microseconds (the time it takes the task
dispatcher to examine the task queue) and allows any data created by external events
via interrupt routines to be entered into working memory and linked to the appropriate
condition elements so that the next conflict-resolution cycle can consider any rules
responding to the new data.

FORTH and Multitasking

The main system task is running the recognize-act cycle; no other tasks have
precedence (except hardware interrupts, of course). Secondary (and hence
software-interruptable) tasks include communication to the operator and data collection.
The recognize-act cycle cannot be arbitrarily interrupted for adding new memory
elements or the system state may become indeterminate. Data tasks are allowed to
update working memory at the beginning of each recognize-act cycle, thus
acknowledging any external events that may have been captured during the previous
cycle.

Most versions of OPS5 allow external calls to routines written in other languages.
Since the goal of this work is to provide a language useful in real-world applications,
external calls are to Forth words (which the user will have built to handle details of
device control, etc.). Any words the user has written for such tasks as instrument control,
data collection, or graphics display are callable from the RHS of any expert system rule.
Thus, the user has the power of an expert system language while retaining easy access
to the underlying hardware.

External Asynchronous Data

The extensible nature of Forth was used in creating a special vocabulary for opening
pathways into an expert system for asynchronous data.'* When the user writes the
software designed to drive and control the particular devices making up the application,
this specialized vocabulary is available for specifying those data elements and the
format for presentation to the expert system. Merely specifying the data elements in a
vector format (resembling a condition element) creates the necessary pointers into the
expert system's set of class objects. When the data forms are instantiated by actual data,
a working memory element is created and becomes accessible (via the Rete network) to
all rules potentially needing the information.

25

Results

A High-Performance PC Expert System Tool

One result of this work has been to make available a high-performance OPS5
running on a desktop computer such as the Hewlett-Packard 200 and 300 Series
machines and a promised port to those personal computers based on the M668000
microprocessor (e.g., Apple Macintosh, Atari 1040 ST, and Commodore Amiga).

The small size of the kernel (operating system) and the efficient use of memory
inherent in well-written code imply small overhead for any expert system written in the
current version of OPS5. A 1-Mbyte system has room for an extended operating system
and the complete interactive and incremental compiling OPS5, with room left over for
2000 rules, 5000 working memory elements, interrupt handlers, data display routines,
and other user routines. The composite system is memory efficient and time efficient as
well.

In the present version only the memory-management {garbage collection) and
pattern-matching sections are written in assembly code: other time-consuming sections
such as conflict resolution and the RHS actions remain in high-level Forth. Even so, its
performance is considerably better than that of the LISP-based OPS5 running on a VAX
11/780, and it approaches the performance of the new TI Explorer on some OPS5
programs.

A Real-Time Expert System Tool

Perhaps more important for members of this conference than being able to write and
execute an expert system using canned knowledge is the ability to write a system that is
event driven. The knowledge base becomes a collection of procedures and algorithims
with accompaning heuristics based on pattern recognition for selecting which algorithm
to invoke and which actions to take. An OPS5 executing on a MC68020-based system
with a math coprocessor benchmarks between two and four times faster than the one
reported above, making the execution of a Forth-based OPS5 equivalent in performance
to a LISP-based OPS5 executing on the promised LISP chips.

The next step in the search for applied AI systems performance has already begun.
A novel microprocessor1 employing RISC techniques in a non-von Neumann setting
has a version of high-level Forth as its machine language. The current chip is available
in a CMOS gate array with a clock frequency of 6 MHz. This is enough to outperform any
current micro rocessors, and many mainframes as well. The next version could be a
GaAs array1 running one to two orders of magnitude faster. The result should be an
expert-sytem engine executing at a rate of 1,000 to 10,000 OPS-like rule firings per
second. Adding a modest degree of parallelism15 could further boost this by another
factor of 10 or more.

26

Summary

Applications- and performance-oriented programmers have been using Forth since
its inception. Recently the idea of Forth as a language for writing other languages,
principally applications-specific languages such as for robotics, has taken hold. An
extension of these ideas was presented here wherein Forth became the assembly
language and the operating environment of the OPS5 expert-systems language,
providing improved performance and a needed extensibility into the domain of real-time
event-driven expert systems.

References

1.

2.
3.

4.
5.
6.
7.

8.

9.

10.

11.

12.

13.

14.

15.

Patrick Henry Winston, Artificial Intelligence, 2nd Edition, Addison-Wesley,
Reading, Mass., pp. 1-3, 1984.
Leo Brodie, Thinking FORTH, Prentice-Wall, Inc., Englewood Cliffs, N.J., 1984.
See the January 1986 issue of I€€€ Software, IEEE Computer Society, Vol. 3,
No. 1 I January 1986.
Leo Brodie, Starting FORTH, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1981.
The Journal of FORTH Application and Research, to be published.
Lawrence P. Forstey, private communication.
C. L. Forgy, "OPS5 User's Manual," Technical Report, Carnegie-Mellon University,
Department of Computer Science, 1981.
Charles L. Forgy, "Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem," Artificial Intelligence, Vol. 19, No. 1, 1982.
Creative Solutions, Inc., Multi-FORTH Version 2.00 User's Manual, Rockville, Md.,
1984.
A. Gupta and C. L. Forgy, "Measurements on Production Systems," Technical
Report, Carnegie-Mellon University, Department of Computer Science, 1983.
W. B. Dress, "A FORTH Implementation of the Heap Data Structure," Proceedings,
1985 Rochester Forth Conference, The Journal of FORTH Application and
Research, Lawrence P. Forsley, Ed., Vol. 3, No. 2, pp. 135-38, 1985.
W. B. Dress, "Communicating Asynchronous External Data to an Expert System,"
Proceedings, Eighteenth Southeastern Symposion on System Theory, I E E E
Computer Society, April 7-8, 1986, pp. 294-96.
Earle Jennings, "The Novix NC4000 Project," Computer Language, p. 37, October
1985.
Velijko Milutinovic, David Fura, and Walter Helbig, "An Introduction to GaAs
Microprocessor Architecture for VLSI," Computer, IEEE Computer Society, p. 30,
March 1986.
Charles Forgy, Anoop Gupta, Allen Newell, and Robert Wedig, "Initial Assessment
of Architectures for Production Systems," Proceedings, National Conference on
Artificial Intelligence, pp. 1 16-20, 1984.

27

53-81

THE EXPERT PROJECT
MANAGEMENT SYSTEM

(EPMS)

Barry 6. Silverman
Coty Diakite

IntelliTek, Inc,
Silver Spring, MD 2091 0

and

The George Washington University
Institute for Artificial Intelligence

Washington, 0. C. 20052

TECHNICAL ABSTRACT

Succeraful project aurugerr (€Me) have been shown to rely on "intuition,n
experience, and anilogfcdl reasoning heuristics.
experienced PMs to avoid repmtfng others' mistakes, It is neeessazy to make the
knowledgs and heurirtics of succeeaful PMa more widely available. The prdplyrsrs
have evolved a model of Pn thought processor over the last decade that is now ready
to b. Implemented ab a generic PH aid.
"spscialiat" expclrt aystema (CRITIC. LIBRARIAN, IDEA MAN, C R A € T m , and WRITER) '

thrf co..ruPicato with each other via a nblackboardn architecture. The varfour
spciilirt expert ryrtemr -a driven to support PM training and problea rolvlng
efnco any waneveraw they parr to the blackboard are subjected to conflict
identffication (A G m A F O W T O R) and GOAL SETTER inference enginor.

For new PMr to be trained and

This aid consist8 of a seriea of

28

OUTL I NE

- PURPOSE & OYERYIEW

- ANALOGY DEFINITIONS

- BLACKBOARD EXPERT SYSTEM TOOL (ARIEL)

- EPMS

- OYERYIEW & CURRENT STATUS
- USER INTERFACE SUBSYSTEM
- KNOWLEDGE BASE
- INFERENCE ENGINE

- EXAMPLE SESSIONS

- NEXT STEPS

29

te-
N

u
. .

. .

e .

4

rn

W
Ll
a3
0
9$
IL

E c
0 .
E-1
3
0
u1

~ f t
c3
ps

30

- - TARGETS

IF: C
T H E n : ?

31

Y
m

I

0
32

INTERFACE SUBSYSTEM
ECUTIVE CONTROL PANEL

- VISUAL ENGINEERING MODULE
- Lattices
- Tables
- Grapher Package
- Menus
- Maps*
- Iconic Scene Depictions*
- Organizatien Charts*
- Flow Diagrams*

o KNOWLEDGE BASE
- ATTRIBUTE LATTICES
- ANALOGS

- LANDSAT-0
- N1MBUS.G
- SPACE TELESCOPE

o INFERENCE ENGINE
- SIMILARITY METRIC
- MEANS-ENDS ANALYSIS
- SAR GENERATOR
- INSPECT FEATURE

* FUTURE ENHANCEMENTS

33

MANAGE EPMS
ADMINI STRAT

USES EPMS FOR -

- PROCESSING
STATUS -

INPUTS FROM
SUBMANAGER

o SAME CONCEPT APPLIES AT PORTFOLIO, PROGRAM,
PROJECT, SYSTEM, SUBSYSTEM OR TASK LEVEL

34

\

I

KNOWLEDGE BASE - ANALOGS

- CURRENTLY AT PROJECT LEVEL

- EACH ANALOG CONTAINS THE
FOLLOWING KNOWLEDGE:
- System Att r ibutes
- Cost Pro f i le
- Appropriation Accounts
- Manpower
- Time
- Project Organization

- SPOTS AVAILABLE FOR ADDITIONAL OPTIONS
- WBS
- PHASEStTIME LINE
- CONTRACT PERFORMANCE
- OTHER

37

o EXAMPLE USER SESSIONS

o OBJECTIVES:

- PERFORM PLANNING FOR NEW PROJECTS USING
LESSONS LEARNED AND OTHER INFORMATION
FROM SIMILAR PRWECTS PERFORMED IN THE PAST
(SESSIONS 1 h 2)

- PERFORM PROJECT MONITORING UTILIZING THE
CROSS-REFERENCING CAPABILITY OF EPMS
(SESSION 3)

38

SESSION 1

- LOGIN

- DOMAIN SELECTION

- NEW PROJECT DEFINITION
- SELECT LEVEL
- SELECT ATTRIBUTES PRESENTED IN MfNU

GENERATED FOR THAT LEVEL

- ARIEL RUN

- INSPECTION OF:
- CANDIDATE ANALOGS
- EVALUATED ANALOGS
- TARGET PROBLEM
- TARGET SOLUTION
- SPECIALIST ACTIVATION REQUESTS (SARSI
- ANY ELEMENT WRITTEN ON BLACKBOARD

- ARIEL OUTPUT
- RECOMMENDED ANALOGS AND CORRESPONDING

- LIST OF ATTRIBUTES FOR WHICH NO ANALOGS
EVALUATION FACTORS

HAVE BEEN FOUND

39

SESSION 2

* CURRENT SYSTEM DEALS ONLY WITH TOTAL COSTS

- COSTtPLANNING DATA IS PRESENTED FOR THREE
BEST ANALOGS TO THE PLANNED PROJECT

- EPMS HELPS USER MAKE ADJUSTMENTS FOR SIZE
DIFFERENTIAL, INFLATION, ETC-

- USER ENTERS PLANNED COSTS FOR NEW PROJECT

- NEW PROJECT COSTS ARE STORED FOR USE IN
SESSION 3

40

SFSSION 3

*

* CI

- PLANNED DATA IS PRESENTED TO EPMS USER

- USER INPUTS ACTUAL DATA AS PROJECT PROGRESSES

- ANY INPUT EXCEEDING PREDETERMINED THRESkIOLDS
CAUSES AN ALARM FLAG TO BE PROPAGATED TO ALL
CATEGORIES THAT ARE CRO -REFERENCEDTOTHE
PROJECT (IN THIS CASE PROJECT ORG., APP'N ACCOUNT,
SYSTEM ARCHITECTURE)

- FUTURE CALLS TO ANY OF THESE CATEGORIES WILL RESULT IN
AN ALARM UNTIL THE CONDITION IS RECTIFIED OR CANCELLED

41

EXT STEPS

o CONTINUE DEVELOPMENTIREFINEMENT, IN
FUTURE OPTIONS

o INITIATE CODE 520 APPLICATIONS UKLUDE FIELD
TESTING)

o IMPLEMENT EPMS AS A SHELLIGEN
SUPPORT ANY PROJECT SITUATION

42

ert System fo Pe

Don Rosenthal, Patricia Monger, Glenn Miller1, Mark Johnston

Space Telescope Science Institute2
Homewood Campus

Baltimore, MD. 21218

Abstract

The Hubble Space Telescope is an orbiting optical observatory due to be launched by
the Space Shuttle in late 1987. It is a complex, multi-instrument observatory whose
resources will be available to the world-wide astronomical community. The “Transfor-
mation’’ system is a hybrid system which utilizes a rule-based expert system to convert
scientific proposals into pre-optimized linked hierarchies of spacecraft activities. These
activities are generated in a format that can be directly scheduled by the planning and

ent e Transfor-
be ntion given

43

An Expert System for Space Telescope Ground Support May 15, 1986

1. Overview

Proposals for use of the Hubble Space Telescope are received from around the world,
either on paper forms or via our remote proposal submission system. These proposal
forms are oriented, as they should be, toward the astronomer who has a particular
astronomical objective in mind. In general, the astronomer is proper
with the scientific performance of the observatory which affect that
sitivities of the instruments, available filters), and not with the particulars of how the
observation is implemented.

Two of the forms, the target list and proposal logsheet, describe the bulk of the input to
Transformation. These forms consist of a few columns each, and exposure lines may be
modified by special requirements that describe timing relationships, target acquisition,
position or orientation constraints, or repetitions, For example, the exposure logsheet
has columns for target name, instrument configuration and mode, aperture and filter
to be used, as well as the duration of the exposure. A special requirement might be
used to constrain an observation to be made at the same sky orientation as an earlier

By contrast, the scheduling system requires a detailed description of the spacecraft
functions which can then be placed on a timeline and converted into command loads.
This description reflects the design of the scheduling software as well as the spacecraft,
and is organized into a hierarchy, as follows:

exposure (e.g. if the light from the object is polarized). ..‘

e An “Exposure” is a single instrument operation.
e An “Alignment” is a set of exposures that can be taken without moving the

telescope (usually a single instrument and a single target, sometimes multiple
instruments and multiple targets).

0 An “Observation Set” is a set of alignments that can be performed without
affecting the guidance system (that is, without reacquiring guide stars).

0 A “Scheduling Unit” is the smallest schedulable entity-it is made up of obser-
vation sets.

e Scheduling Unit Links (scheduling units may be linked in time).

Even the first level of the hierarchy cannot be simply mapped from the proposal forms,
although both input and output use the term “exposure”, as there is so much implict
spacecraft activity in a simple scientific description. For example each exposure logsheet
line has a handful of attributes, but the scheduling system uses three database relations
just for exposures, and the main exposure relation has over 100 fields describing such
things as expected data volume, aperture coordinate system descriptions, as well as
positions of polarizer and filter wheels.

Obviously, most of the scheduling information is not directly available from the forms.
Much of it is derivable, but some is simply a result of decisions made by
“Operations Astronomers” who are training themselves in the day to day us

44

An Expert System for Space Telescope Ground Support May 15,1986

ground system. An information expansion factor of about 50 is raordinary, and
when repeated observations and observation sequences are spec y the proposer,
it can be larger than that. Additionally, there are usually several distinct but valid
transformations for a given proposal.

2. The Manual Process

When transformation is done by hand, it is divided into two steps. The fist step
is performed by the Operations Astronomers. They read the exposure logsheets and
target lists, and generate a “script” which describes the hierarchical organization they
have chosen for that proposal. This script is simply a listing of assignments of expo-
sure logsheet lines to scheduling system exposures, alignments, observation sets, and
scheduling units. It also includes the calculated total alignment time, and any timing
links that exist between scheduling units. Most scripts are roughly one page long, are
handwritten, and may contain comments or warnings to help in the next step. An
expert Operations Astronomer can typically generate between one and two scripts per
day.

The next step is to take both the script and the proposal to a terminal connected to the
planning system, and to enter the details of the hierarchy into the proposal management
data base (PMDB). This is performed by “Console Operators”, who are aided by a set
of written procedures collected into a “cookbook”. This cookbook helps the console
operators make appropriate choices for the hundreds of fields of the relations in the
PMDB. This operation typically takes a period of time equivalent to that of script
generation.

3. The Automated System

Transforming proposals by hand is obviously extremely labor intensive, tedious, and
therefore error prone, all of which contributed to the decision to computerize the pro-
cess. Because it is not a well structured problem, because a given proposal might be
transformed a number of different ways, and because manual transformation involved
considerable expertise, a rulebased approach was adopted.

The Transformation system automates both steps of the procedure described above.
The rulebase, written in OPS5, has encoded the expertise of the scripting pr
well as the cookbook-aided database generation.

The high level dataflow of transformation is as follows: data is retrieved into the
OPS5 working memory and processed by the rulebase. A human readable and ed-
itable “assignment-file” is produced by transformation. This assignment file is then
run through a processor which converts it into a database command file. This file
can then “append itself” into a local database whose relations mimic the operational
PMDB. Tuples in the local copy are loaded the operational PMDB on request.

45

An Expert System for Space Telescope Ground Support May 15, 1986

and load it into OPS5 working memory. The data structure declarations are included
in the OPS5 program source, and the routines can be called from the right hand side
of an OPS5 rule, as data is needed.

cision to use the assignment file and its related processing was made for several . Most importantly, however, it is a tremendous aid to building user confidence.
When a proposal is transformed, an Operations Astronomer can examine the full as-
signment file in detail. The Operations Astronomer may make any changes deemed
necessary, using any available text editor. The modified file can then be made to “load
itself“ into the database. In addition, an assignment file summarizer was written which
extracts relevant data from the file and reformats it into a close equivalent of a hand-
written script. This makes a quick check of the results very straightforward for an
Operations Astronomer.

The routines which reformat the assignment file for loading into the PMDB also pull
“pass-through” data from the entry database for loading. This pass-through data is typ-
ically textual, and may need only minor reformatting. Substantial efficiency is gained
by feeding the rule base only that information which is needed €or transformation.

4. The Rulebase

The rulebase is goal oriented, utilizing a preestablished chain of goals, as follows:
0 Retrieve the input data from the database
0 Transform the target data
0 Merge exposures into alignments where possible and desirable
0 Merge alignments into observation sets
0 Merge observation into scheduling units
0 Fill in PMDB attributes
0 Write the data to the assignment file

als need a bit more structure. For example, the goal
steps: ordering the exposures, finding potential

ging exposures
ges, examining

formed alignments (the ground system can only
one downlink per alignment), and finally, assigning the

g OPS5 vector attributes, in this case
a1 is shown in figure 1,

46

An Expert System for Space Telescope Gro 5, 1986

(p make-goal-merge-exposures
. .

€<goal-to-remove>
(goal

^has-name
*has-status satisfied) 3

transf orm- t arge t -data

- (goal
^has-name merge-exposures)

-->

(remove <goal-to-remove>

(make goal
has -name
^has-status
“task-list

merge-exposures
active
order-exposures
f ind-potent ial-exposure-merges
examine-communications-needs-of-merged-exposures
assign-exposure-attributes))

Figure 1: Activating the ’exposure merging goal

“IF there is a goal which has the name ‘transform-target-data’ and has the status ‘sat-
isfied’’ AND there is no goal which has the name ‘merge-exposures’, THEN remove the
first goal, AND make make a goal with the name ‘merge exposures’ and with active
st at us, and with the following task-list : ‘or der-exposures’, ‘ find-potent ial-exposure-
merges’, ‘examine-communications-needs-of-merged-exposures’ and ‘assign-exposure-
attributes’.

Most rules refer to a specific goal in their left-hand-sides, and thus can only be instan-
tiated when that goal is active. This is the only sequencing needed in the system, even
though goals and tasks will have many associated rules (some have over 60).

47

An Expert System for Space Telescope Ground Support May 15, 1986

then they should be placed in the same alignment, as this will reduce
maneuvering overhead. The corresponding rule is listed in figure 2.

To paraphrase the rule:

IF the goal to merge exposures is active, and the present task is finding potential
exposure merges, AND there is a link between two exposures specifying that they
have the same orientation, AND the exposures in question use the same instrument
configuration, THEN make a “mergeable-exposures” record specifiying that they be
placed in the same alignment, and note that this is “unmergeable” if a contradiction is
found, and that it is a “same-orientation” type merge, with some specified (numerical)
level. ’

Note the use of a table lookup to find the “level” of the exposure merge. In general,
exposures may be merged for several reasons, but only the most important or highest
level merge need be used. The redundant, less important merges are removed from
working memory. Employing a table allows new merging levels to be added, as well as
allowing levels to be rearranged, without code changes.

The preceding rule would fire for every pair of exposures which the proposer had spec-
ified to be taken at the same orientation, and which used the same instrument config-
uration. There are potentially a large number of cases where this would actually not
be acceptable. Some examples:

0 If the High Speed Photometer was to be used, but different filters were requested
(the HSP has fixed filters, one per aperture; to change filters the telescope must
actually be moved a small amount).

0 If one of the exposures was an onboard or interactive target acquisition for
the other (by definition within the scheduling system, alignments cannot mix
acquisition and data collection exposures).

0 If the observer had specified starting times for the two exposures, but the second
was to start more than 10 minutes after the end of the first (in that case it might
be useful to slew off and do something else, returning for the second exposure
later.)

The HSP unmerging rule is shown in figure 3.

Note that this unmerging rule can be applied to other merge types besides “same-
d “consecutive”. This consecutive type

special requirements explicitly stated

ften assumes that
efore an exposure

48

An Expert System for Space Telescope Ground Support May 15, 1986

a particularly large number of clauses in this merging rule. This is also the lowest
category of merges and therefore is susceptible to the most constraint violations and a
proportionately large number of unmerging rules.

Once merging and unmerging of exposures has completed, an “assignment record” is
generated for each input exposure. Each exposure in the same alignment is given the
same alignment order number, and that identifier is recorded in the assignment record,
Exposures with the same alignment order are sorted and an appropriate exposure ID
is also recorded.

The remaining hierarchy building rules operate in a similar manner. An additional
heuristic used at upper levels is as follows: if two lower level entities were unmerged,
then they are somehow related, and an attempt should be made to merge them on the
next level. After merging and unmerging at each new level, the appropriate identifier
is generated and included in the assignment record.

When this first half of transformation is completed, there will be an assignment record
for every input exposure, and it will contain the exposure, alignment, observation set
and scheduling unit identifiers assigned to that exposure. At this point, data structures
corresponding to the PMDB relations are generated for each assignment record, as
appropriate, and default values are placed in some fields of those structures. Rules can
then fire to change default values, or to assign values to slots which are still empty.

For example, at the observation set level, details of the pointing control system (PCS)
need to be described. Gyros can be used if the telescope does not need accurate
pointing or stability. This would be the case for an internal calibration (where a
shutter is opened, and a lamp of accurately known brightness and color is turned on).
If any exposure in any alignment of an observation set is not an internal calibration,
however, the Fine Guidance Sensors (FGS) must be used to lock onto guide stars. The
corresponding rule is shown in figure 4.

This rule uses the assignment record as a cross reference between a PMDB data struc-
ture and the exposure logsheet line that it corresponds to. The single rule is suflicient
to check all exposures of a given observation set.

5. Evaluation of the Transformation System

The transformation system was delivered to the Operations Astronomers in December
of 1985. It has undergone operational testing since then, and has matured considerably.
The present transformation rulebase consists of approximately 375 rules and has been
used to transform proposals for scheduling and use during the Ground System Thermal
Vacuum test.

The users (who did not mind being automated out of this tedious job) are very satisfied
with transformation. It usually performs as well as a human expert, and from time
to time the automated transformation has been judged to be better than the manual

49

An Expert System for Space Telescope Ground Support May 15,1986

version. Cases still come up which are not handled correctly, but these have in the past
been easily dealt with by enhancing the rule base.

The adaptibility of the system has been the biggest success of the project. Rulebased
systems are reputed to be malleable in general, but there are several reasons why
this is true of the Transformation rulebase. Firstly, OPS5 is a particularly expressive
language. In addition OPS5 rules, being completely independent of each other, are
naturally quite functionally strong, and very weakly data coupled. And, importantly,
the problem was well matched to a rulebased solution.

Finally, building the system has served to formalize the “folklore” of transformation,
as well as document the process. The notes written by the Operations Astronomers for
exposure merging now say, “see cross-reference table for co&g./mode, or Don’s OPS5
rules.”

6. Acknowledgements

Dr. Sidney B. Parsons and Dr. Douglas B. McElroy provided the expertise for the
rulebase. This project could not have been successful without their contributions.

50

An Expert System for Space Telescope Ground Support May 15, 1986

(p f ind-same-orientation-mergeable-exposures

-->

(goal
^has-name
^has-status
^task-list

(exposure-link
^has-proposal-id
^is-version
^has-exposure-number
^is-linked-to
^has-link-type

(exposure-specif ication
^has-proposal-id
^is-version
^has-exposure-number
^uses-SI-configuration

(exposure-specif ication
^has-proposal-id
^is-version
^has-exposure-number
^uses-SI-conf iguration

(mergeable-level
^symbol
^value

(make mergeable-exposures
^first-proposal-id
^f irst-version
^first-exposure-number
^ second-proposal-id
^ second-version
^second-exposure-number
“is-unmergeable
^is-mergeable-level
^merge-type
^has-unique-label

merge-exposures
active
f ind-potential-exposure-merges)

<proposal-id>
<version>
Clinked-exposure,
<main-exposure>

SAME-OBIEIJT)

<proposal-id>
<version>
<main-exposure>
<SI-conf iguration>)

<proposal-id>
<version>
<linked-exposure>
<S I - c onf igur a t i on>)

sane-orientation
<same-orientation-level>)

<proposal-id>
<version>
<main-exposure>
<proposal-id>
<version>
Clinked-exposure>
true
<same-orientation-level>
sane-orientation
(genatom) 1 1

Figure 2: Merging “same-orientation” exposures

51

An Expert System for Space Telescope Ground Support May 15, 1986

(p Remove-HSP-merge-if -f ilters-dif f er

(goal
^has-name merge-exposures
^has-status active
^task-list f ind-potential-exposure-merges)

-->

({mergeable-exposure-link>
(mergeable-exposures

^first-proposal-id
^first-version
^first-exposure-number
^second-proposal-id
^second-version
^ second-exposure-number
^merge-type

^is-unmergeable

(exposure-specif ication
^has-proposal-id
^is-version
^has-exposure-number
^uses-SI-configuration

^f irst-spectral-element

(exposure-specif ication
^has-proposal-id
^is-version
^has-exposure-number
^f irst-spectral-element

(remove <mergeable-exposure-link>)

<proposal-id>
<version>
<f irst-exposure,
<proposal-id>
<version>
<second-exposure>
<< sequential-no-gap

consecutive
same-orientation >>

true) 3

<proposal-id>
<version>
<fir st - expo sure)
<< HSP/PHOT HSP/PldT HSP/PRISN

<spectral-element>)
HSP/POL HSP/ACQ HSP/IMAGE >>

<proposal-id>
<version>
<second-exposure>
<> <spectral-element>)

Figure 3: Unmerging HSP exposures which use different filters

52

An Expert System for Space Telescope Ground Support May 15,1986
._ -.

(p set-pcs-mode-to-FGS-if -entire-obset-is-not-internal-calibration

(goal
^has-name assign-PMDB-attributes
^has-status active)

(<obset-entry>
(PMDB-obset -entry

^has-proposal-id
^has-obset-id
^has-pc s-mode

(assignment -record
^has-proposal-id
*is-version
^has-Pepsi-exposure-number
^has-alignment-id
^has-obset-id
^has-exposure-id

(exposure- specification
^has-proposal-id
^is-version
^has-exposure-number
^is-internal-target-type

--> ,

(modify Cobset-entry>
^has-pcs-mode

<proposal>
<obset-id>
GYRO) 3

<proposal>
<version>
<exp-number>
<alignment -id>
<obset-id>
<exposure-id>)

<proposal>
<version>
<exp-number>
nil)

Figure 4: A rule which sets the PCS mode

53

An Expert System for Space Telescope Ground Support May 15, 1986 12

Don Rosenthal is a Senior Computer Scientist in the Observatory Software Branch of
the Space Telescope Science Institute. He received an A.B. in Engineering in 1975 and
an S.M. in Applied Mathematics in 1976, both from Harvard University.

Patricia Monger is a Senior Scientific Programmer for the Observatory Software Branch
of the Space Telescope Science Institute. She has an M. Sc. Degree in Astronomy from
the University of British Columbia.

Glenn Miller is an astronomer with the Observatory Software Branch of the Space
Telescope Science Institute. He received a Ph.D. in Astronomy from the University of
Texas at Austin in 1981.

Mark Johnston heads the Obseraia-tory Softwaxe Branch of the Space Telescope Sci-
ence Institute. He received a Ph.D. in Physics from the Massachusetts Institute of
Technology in 1978.

54

AN EXPERT SYSTEM PROTOTYPE FOR A ID ING I N THE DEVELOPMENT OF SOFTWARE
FUNCTIONAL REQUIREMENTS FOR NASA GODDARD S COMMAND MANAGEMENT SYSTEM: 2/

A CASE STUDY AND LESSONS LEARNED* - _ - _

Dr . Jay Liebowitz

Department of Management Science
School of Government and Business Admin is t ra t ion

George Washington Un ivers i ty , Washington, D.C. 20052

ABSTRACT

A t NASA Goddard, the r o l e of the command management system (CMS) i s t o t ransform
general requests f o r spacecraft operations i n t o de ta i l ed operat ional plans t o be
upl inked t o the spacecraft. The CMS i s p a r t o f the NASA Data System which
e n t a i l s the downlink of science and engineering data from NASA near-earth
s a t e l l i t e s t o the user, and the u p l i n k of command and con t ro l data t o the
spacecraft. Presently, i t takes one t o three years, wi th meetings once o r twice
a week, t o determine func t iona l requirements for CMS sof tware design. As an
a1 t e r n a t i v e approach t o the present technique o f developing CMS software func-
t i o n a l requirements, an exper t system prototype was developed t o a i d i n t h i s
function. Spec i f i ca l l y , the knowledge base was formulated through in te rac t i ons
w i t h domain experts, and was then l i n k e d t o an e x i s t i n g exper t s stem appl ica-
t i o n generator c a l l e d "Knowledge Engineering System (Version 1.3 J . I ' Knowledge
base development focused on f o u r major steps: (1) develop the problem-oriented
a t t r i b u t e hierarchy; (2) determine the knowledge management approach; (3) encode
the knowledge base; and (4) val idate, t es t , cer t i f y , 'and evaluate the knowledge
base and the exper t system prototype as a whole, Backcasting was accomplished
f o r v a l i d a t i n g and t e s t i n g the expert system prototype. Knowledge refinement,
evaluat ion, and implementation procedures o f the exper t system prototype were
then transacted.

This paper w i l l f i r s t discuss (Sect ion 1.0) the problem environment o f determin-
i n g CMS software func t iona l requirements, w i t h a specia l emphasis on the use o f
analogy. Then, the expert system approach w i l l be discussed f o r handl ing CMS
requirements development (Sect ion 2.0). Next, v a l i d a t i o n and evaluat ion proce-
dures o f the exper t system prototype w i l l be explained (Sect ion 3.0). Then,
lessons learned from developing t h i s expert system, as we l l as others, w i l l be
c i t e d i n Sect ion 4.0. Last, conclusions w i l l be drawn i n Sect ion 5.0.

1.0 Problem Environment

The Command Management System (CMS) a t NASA Goddard Space F l i g h t Center i s
responsible f o r t ransforming general requests f o r spacecraf t operat ions i n t o
minute ly de ta i l ed operat ional plans For each sate1 1 i t e i n ear th o r b i t , space-
c r a f t command sequences are needed t o p o s i t i o n the s a t e l l i t e and t o send science
and te lemetry data from the s a t e l l i t e t o i t s ground con t ro l center. These

*
Par t o f t h i s paper appeared i n the

Government Conference, IEEE/MITRE, Washing

55

command sequences are der ived from general requests fo r spec i f i c
by experimenters , mission operat ions personnel , o r mission suppor

era t i ons made

Before these commands can be generated, i t i s f i r s t necessary t o develop the
software func t iona l requirements which w i l l eventual ly be transformed i n t o the
software used fo r s a t e l l i t e commands. The present way o f d iscover ing the
funct ional requirements f o r a new miss ion 's command management system software
i s through a ser ies o f meetings, in terv iews, quest ionnaires, and documents.
Usual ly a team of con t rac tor personnel w i t h vary ing years o f profess ional
experience i s assembled t o determine the funct ional requirements f o r a new
miss ion 's command management system software. Typ ica l l y , t h i s team w i l l meet
w i t h NASA personnel , cont rac tors , sate1 1 i t e p r o j e c t team members, and exper-
imenters (s c i e n t i s t s) t o synthesize the func t iona l requirements fo r the CMS. I t
can take from one t o th ree years of these meetings t o ascer ta in a f i n a l l i s t o f
funct ional requirements. From these requirements, the necessary software can be
designed t o accomplish the CMS object ives.

The present technique of gather ing func t iona l -requirements has var ious 1 i m i t a -
t ions :

o The present method o f meeting numerous times wi th NASA personnel , p r o j e c t
team members , experimenters , and contractors i s very time-consuming i n
ascer ta in ing the funct ional requirements fo r CMS operat ion. I n fac t , by
having these meetings and manually record ing the resu l t s , i t has taken one
t o three years f o r determining the func t iona l requirements.

o ' Another element compounding t h i s problem s i t u a t i o n i s the external pres-
sures of greater frequency o f Shut t le launches and less lead time ava i l ab le
t o develop a new miss ion 's ground system. With l ess lead t ime ava i l ab le
fo r the ground system design o f a new mission, the l uxu ry of tak ing up t o
three years t o develop the func t iona l requirements i s vanishing.

o Add i t iona l l y , the team contracted t o develop the func t i ona l requirements
may no t cons is t s o l e l y o f i nd i v idua ls w i t h many years o f professional
experience i n t h i s area because these persons may be assigned t o d i f f e r e n t
tasks w i t h i n the company. This places a l i m i t a t i o n on the wealth o f
knowledge i n terms o f profess ional experience and exper t i se fo r determining
func t iona l requirements.

To decrease re l i ance on these ind iv idua ls , i t would be b e n e f i c i a l t o NASA t o
have some automated way o f captur ing the professional experience o f these
"experts," before they leave.

I n a study performed by Silverman [2-41 on how analogy i s used a t NASA Goddard,
two very i n t e r e s t i n g paradoxes resu l ted from a NASA quest ionnai re response and
follow-up interviews. These paradoxes are [3]:

PARADOX 1: Human b ias and overconfidence i n the face o f uncer ta in ty i s
l i k e l y t o lead the p r a c t i t i o n e r s t o use analogy despi te t h i s
obstacle.

PARADOX 2: a1 support f o r the use o f analogy i s i n s u f f i c i e n t and
ad t o inadequate knowledge acqu is i t ion .

56

These paradoxes suggest that a particular task at Goddard is being done; howev-
er, the task is not being accomplished in the most efficient and effective way
due to the practitioner's use of suboptimal analogical knowledge [4].

This suboptimal analogical knowledge is caused by the lack of capturing analog-
ical knowledge in the "corporate memory" for later reuse [3]. In the case of
determining CMS software functional requirements, there hasn't been a central
source that accumulates CMS software functional requirements of previous sate1 -
lites. Relating to the analogical procedure, the CMS designer, whether knowing-
ly or not, is using analogy as this is an intrinsic operation of the human
brain. As a result of analogical analysis, a rudimentary knowledge base is
created by the CMS designer. The problem is that the knowledge base is not
being developed in any structured way due to the bias pollution caused by the
interaction of one's value hierarchies and worldviews, as a result of drawing
inferences through analogy [l]. Thus, this knowledge base is not contributing
in an optimal sense to the formulation of a "corporate memory." It seems
apparent, from the above paradoxes, that a need exists, perhaps in the form of
an automated tool, for developing this capability to aid the CMS software
designer in the reuse of functional requirements.

._ -.

The major reason for the need for a new approach for developing CMS software
requirements is to enhance analogical analysis. Analogical analysis need to be
enhanced because of an inadequate knowledge base resulting from bias pollution,
and because of an inadequate procedure for inference. Analogical analysis is
predicated upon drawing inference. Optimizing analogical analysis entails
minimizing biases in the inference. Inference bias comes primarily from the
interactions between the value hierarchies and worldviews of the CMS designer
[l]. Through the use of an expert system, bias is dampened out because a
"computer" is being used to act as the inference engine. The combination of the
software and hardware dampens out bias because expert systems don't have dynamic
interactions of value hierarchies and worldviews. By reducing the bias pollu-
tion used in drawing inferences, the resulting knowledge base can become purer
than that without the use of an expert system.

\

2.0 Expert System Approach

Many approaches could be used for determining CMS software functional require-
ments. Among these approaches are data flow-oriented methods (e.g., Structured
Analysis and Design Technique) , data structured-oriented techniques (e.g.,
Jackson's method), and data prescriptive methods (e.g., Program Design tan-
guage). However, the expert system approach, by nature of its definition and
ability to damp out inference bias, allows for specifically capturing the
professional expertise of CMS design "experts," which is one of the major
problems at hand.

For this research, an expert system application generator was used to develop an
expert system prototype for determining software functional requirements for a
satellite's command management system. An expert system application generator
is a tool used for building expert systems. It is the dialog structure (lan-
guage interface) and inference engine (expert system component that searches and
generates the solution hypothesis) which, when linked to a knowledge base (set
of domain facts and rules of thumb), functions as a fully operational expert
system. With the use of an expert system application generator, an expert
system does not have to be built from scratch and take 10 to 20 man years.

57

The expert system application generator used for the development of the CMS
software requirements expert system prototype was "Knowledge Engineering System"
(KES) , Version 1.3. KES was developed by Software Architecture and Engineering,
Inc., and was modeled after the Knowledge Management System by Dr. James Reggia
of the University of Maryland. KES is implemented in Wisconsin LISP, Franz
LISP, and IQ LISP, and runs on the VAX, UNIVAC, Symbolics, CDC, DEC, Apollo, and
IBM XT.

In using an expert system application generator for expert system development,
the major effort is in constructing the knowledge base. The knowledge base is
the set of facts and heuristics which are specific to a particular problem do-
main. There were four major steps used in constructing the knowledge base, to
link with KES, to form the expert system prototype for CMS software functional
requi rements determi nation.

The first step in developing a knowledge base was formulating the problem-
oriented attribute hierarchy [5,6]. This attribute hierarchy is a framework
around which the knowledge base will be constructed [7]. It serves-as a picto-
rial diagram in representing the association of components, or "attributes ,I'
which ultimately leads to the decision(s) or "ultimate goal(s)" reached by the
expert system. An excerpt of the basic structure of the attribute hierarchy for
determining CMS software functional requirements is shown in Figure 1. The
complete attribute hierarchy consists of.32, 16, and 28 attributes leading to 6,
36, and 139 level 1, 2, and 3 software functional requirements, respectively.

The fragment of the attribute hierarchy in Figure 1 depicts the "ultimate goal"
shown at the top level--to obtain third level CMS software functional require-
ments. The bottom of the hierarchy consists of "attributes" which determine
level 1 functional requirements (which eventually lead to level 3 requirements).
In this case, the values of these attributes must be supplied by the end-user,
and are thus called "input attributes'' [6]. All the non-circled attributes in
Figure 1 are input attributes. The middle level of the hierarchy depicts
intermediate "inferred attributes" (i .e. , level 1 functional requirements ,
circum, level 2 functional requirements) whose values are inferred from the
input attributes. The goal at the top level (level 3 functional requirements)
is also an inferred attribute, as its value is inferred from the intermediate
inferred attributes.

In order to develop the attribute hierarchy for determining CMS software func-
tional requirements, up to three levels, the following steps were used in order:

(1) Revised and studied NASA documents and contractor-generated reports to
determine what influences CMS software functional requirements. In partic-
ular, the thrust was on discovering the characteristics, or "input attri-
butes," which determined a satellite's CMS software functional require-
ments. These characteristics represent the bottom line of the attribute
hierarchy. These input attributes represent questions to the user.

(2) Met with domain experts to confirm these characteristics and to develop a
complete list of characteristics, as additions and deletions were needed.

(3) Through consultations with the domain experts, it was agreed that the
knowledge base, as a first cut, should be modeled after the CMS software
functional requirements of the most comprehensive sate1 1 i te to date. The

58

for Data *

eminatlon to
ercnt Appllc.

Consld. Mlsslon Schcdullng of Payloads Expatlacnts

59

reason for this thinking was that the most complex satellite would have the
most exhaustive list of software functional requirements. Thus, it would
be easier to delete requirements for a less sophisticated satellite than it
would be to add many requirements. Using this logic, Space Telescope (ST),
which will be launched in August 1986, was used as the model for developing
CMS software functional requirements. Since ST represented one of the
three future classes of satellite missions, using ST seemed to a reasonable
approach.

(4) After reading through numerous ST requirements documents and tal king with
the domain experts, the level one CMS software functional requirements were
developed. This level is represented in the next tier above the -bottom
level in the attribute hierarchy. After lengthy discussions with the
experts, the bottom level attributes were linked to the level one software
functional requirements. In other words, the determination was made of
"which bottom level attributes influenced which level one requirements.''

(5) Next, the level two CMS software functional requirements were developed via
ST documents and discussions with the domain experts. Then, the experts
related what bottom level characteristics (attributes) influence the level
two requirements and what other attributes influence how to get from level
one to the level two requirements.

(6) Last, the level three CMS software functional requirements were determined
through reading ST documents and discussing the information with the
experts. Then, the experts related the bottom level attributes which
influence how to get from the level two to the level three requirements:

Once the problem-oriented attribute hierarchy was developed through interactions
between the knowledge base author (KBA) and expert, the next major step in
knowled e base development was the selection of the knowledge management ap-
proach i! 61. This deals with the best way of representing the knowledge acquired
from the expert.

According to Reggia [5] and Software Architecture & Engineering, Inc. [SI, there
are three criteria to use in selecting a knowledge management approach. These
are: (1) pre-existing format of the knowledge, (2) type of classification
desired, and (3) context-dependence of the inference process [6].

The pre-existing format of determining CMS software functional requirements is
already organized as rules. Rules are implicitly used in the present way of
developing CMS software requirements. The CMS designer thinks of rules in the
IF-THEN format but does not formally list the rules. The CMS designers indicate
that requirements for new satellites are based on previous requirements for
earlier satellites in cases of similar satellite apparatus and functions. By
using a rule-based deductive expert system prototype, the knowledge can be ke t
in the same form as presently being used, thus creating an intuitive appeal [5 5 .
The second factor to be considered for knowledge management selection is the
type of classification. Classification types are typically either probabilis-
tic, categorical, or mixed [5]. In the CMS software functional requirements
domain, the classification is predominantly categorical. This can be seen as
most of the decisions in the requirements determination are yes-no answers. For
example, the question of needing real-time user response can be answered by yes

or no. Additionally, since there are three major classes of future satellite
missions, analogical reasoning can be used to categorize, under each class,
previous satellite CMS requirements information. Conditional probabilities,
needed for a Bayesian-probabilistic approach to classification, are almost
impossible to determine, in the CMS case, due to a large volume of test data
necessary to compute a priori probabi 1 i ties.

The last major consideration in adopting a knowledge management scheme is the
context-dependence of the inference process. Rule-based deduction is an appro-
priate method for this problem domain when considering context-dependence. This
is true because the number of attributes per antecedent is very low [6]. This
is helpful for writing a set of rules as all of the context for using each rule
does not have to be included in the antecedents of the rule [6].

Based upon the aforementioned criteria, a rule-based deduction approach should
be used as the knowledge management (representation) method.

After deciding on a rule-based approach, the next phase involved writing the
rules based upon the problem-oriented attribute hierarchy and discussions with
the experts. The rules, in handwritten form, were shown to the experts for
their comments. Some rules had to be changed due to omissions of attributes,
incorrect cause-and-effect relationships, and inappropriate attribute names.
Since each rule was in the form "IF antecedent THEN consequent" (certainty
factor), the certainty factors next needed to be determined by the expert.
These certainty factors were determined by. the expert's best judgment, in which
values between -1.0 (absolutely false) and 1.0 (absolutely true) were assigned
to the consequent of each rule.. KES handles uncertainty in its production rule
subsystem, in the same manner as does MYCIN, an expert system designed to
diagnose bacterial infections in the blood (for more information, see [8,9]).

The third major step in knowledge base development was encoding the knowledge
base [5, 61. This step involves creating a knowledge base using a text editor
and storing the knowledge base in a file in the computer's memory [7]. Once
encoded, the knowledge base is submitted by the'knowledge base author to the KES
production rule subsystem (KES.PS) which parses it to create objects that can be
operated on by the LISP codes and to check for errors, much as a compiler
examines a high-level language program [7].

For encoding the knowledge for determination of CMS software functional require-
ments, a VAX computer was used, through the kind permission of Software Archi-
tecture & Engineering, Inc. A file was created via the use of the UNIX editor.
In this file, the knowledge for the appropriate KES sections--certification,
attachments , references, attributes, rules and actions-was encoded.

The certification section indicates the knowledge base author, the date of
knowledge base development and testing procedures, and special acknowledgements.
When "display certification" is entered, the contents of the certification sec-
tion are displayed to the end-user; otherwise, the message "this is an uncerti-
fied knowledge base" is displayed [7].

The attachments section follows the certification section. The attachments
section allows the knowledge base author to use free-text attachments for
providing definitions, synonyms, calculations, explanations, and questions of an
attribute or attribute value. These free-text comments facilitate better

61

understanding and r e a d a b i l i t y on the p a r t o f the user due t o enhanced explana-
t i o n and i n t e r a c t i o n f a c i l i t i e s .

The nex t sect ion included i n t h i s prototype 's knowledge base i s the references
sect ion. This sect ion a l lows the knowledge base author t o c i t e any sources used
t o develop the knowledge base. This section, as wel l as the c e r t i f i c a t i o n sec-
t i on , i s op t iona l f o r i n c l u s i o n i n a knowledge base. When "d isp lay references''
i s used, the references are displayed t o the end-user.

Fol lowing the references sec t ion i n the prototype 's knowledge base i s the
mandatory "a t t r i bu tes " sect ion. This sect ion must be included i n a knowledge
base, and serves i n dec la r ing the a t t r i b u t e s shown i n the a t t r i b u t e h ie rarchy
and any associated op t iona l attachments (synonyms of a t t r i b u t e s) [7]. A l l .
a t t r i b u t e s i n the a t t r i b u t e h ierarchy must be included i n the a t t r i b u t e s sec-
t i on .

The ru les section, another mandatory sect ion i n the prototype 's knowledge base,
fo l lows the a t t r i b u t e s sect ion. The ru les are i n the form: i f antecedent(s)
then consequent(s) (c e r t a i n t y fac to r) . Figure 2 shows an excerpt of the 154
r u l e s fo r the expert system prototype, as developed through the discussions and
i t e r a t i v e r u l e refinements w i t h the domain experts. The antecedents and
consequents are made up mainly o f statements , 1 i ke "nature o f mission=command-
able." Logical connectors (& and "and," / f o r "o r ") can be used fo r separat ing
antecedent statements , where d i s j u n c t i o n has precedence over conjunct ion ['I].
The "/" cannot be used f o r separat ing consequent statements. The c e r t a i n t y
fac to rs i n the ru les sec t ion are developed by the domain exper t ' s b.est judgment,
and they can e a s i l y be changed i f needed.

The l a s t sect ion i n the prototype 's knowledge base, as i n a l l KES knowledge
bases, i s the "act ions" sect ion. Through the act ions sect ions , the knowledge
base author can d i r e c t l y in f luence the operat ion o f the exper t system [7]. This
can be achieved by i nc lud ing commands (e.g., askfor, obtain, d i sp lay) i n the
act ions sect ion t o cont ro l the execution o f the expert system. A lso , messages
can be included i n the knowledge base and would then be displayed t o the end-
user i n order t o make the exper t system easier t o use. The ac t ions sec t ion must
be inc luded i n a knowledge base.

Various human f a c t o r design elements were incorporated i n t o the exper t system
prototype. One o f the human fac to rs design considerat ions which was incorpora t -
ed i n t o the expert system prototype was the use of messages. Construct ive and
h e l p f u l messages were used w i t h i n the act ions sect ion o f the knowledge base.
These messages:

(1) prov ide i ns t ruc t i ons f o r operat ing the expert system;

(2) prov ide reasons i f being ex i ted from the expert system;

(3) prov ide descr ip t ions o f some pe r t i nen t KES.PS commands and how t o use them;

(4) acknowledge the end o f the session, and provide in fo rmat ion f o r r e s t a r t i n g
o r terminat ing the user-expert system session;

(5) a l low f o r in format ion rephrase; and

62

m a eo
9) E
9) rl
E

w
0

0 z
X

i
R
Eu
0

m
U

i 9)

M a
E a
6
at
a
13
I

U

a
U

5
5
s
Lc
rl

al
Lc

rl a

rl

U

W
9)
Lc
&
I
4)
0
a
0
at
U
6 co
y1
0
sr
U

U
t .

e
U e

m
rl

rl
01 w m E
rl a

al B
a a c 1 a U

rl
9) U a U
3
U
4

g B

a t *

63

..
U
U a

a
U a
.E)

9)
- 4

a u a

M r O a
S E a a E a u u w a L c w o

0
I U

n co
0
Y

(6) pu t conclusions i n t o perspective.

Examples of some o f these mess es a r e taken from a user session and are shown
be l ow:

These are the major charac ter i i c s i n f l uenc ing CM r e func t iona l
requirements determinat ion f o r new s a t e l l i t e . Ea t e r i s t i c w i 11
now be displayed along w i t h i t s associated value(s) and c e r t a i n t y fac-
t o r (s) . The c e r t a i n t y f a c t o r ranges i n c l u s i v e l y between -1.0 (abso lu te ly
f a l s e) t o 1.0 (abso lu te ly t rue) , and i t s de fau l t value i s 1.0.

coup1 i n g and in te r re la t i onsh ips between experiments: present (1.0).

Messages guide the user through the expert system session and they keep the user
informed as t o what i s happening dur ing the session.

A second technique used i n the exper t system fo r e f fec t i ve end-user i n t e r f a c e
design i s the use o f menus. Menus a l low the user t o choose what he/she would
l i k e the exper t system t o perform. Menus a l l ow users simply t o recognize items
r a t h e r than t o r e c a l l them [lo]. To avoid menus from becoming tedious i f the
choices are too f i n e l y d e t a i l e d [ll], KES a l lows the user t o a l so answer "un-
known" o r "none" i f the user i s no t sure o f the answer o r f e e l s none o f the
answers apply. Menus were used i n the exper t system to :

(1) determine i f the user wants t o begin the session;

(2) determine i f the user would l i k e references displayed;

(3) ask the user i f he/she wants:

(a) t o ob ta in a j u s t i f i c a t i o n of the requirements j u s t reached by the
exper t system,

(b) t o cont inue t o ob ta in lower- level requirements,

(c) t o determi ne requirements fo r another sate1 I i t e ,
(d) t o stop.

An example o f a menu used i n the exper t system prototype i s shown below through
an excerpt of a user session:

What do you want t o do now

(1) ge t a i c a t i o n o f the f i r s t l e v e l r e reached by the
requ i r a i d

1 eve1 requ i rem

64

user needs for certain observations:
(1) absent
(2) present
= ? explain

The third human fact dge
base [12). Attachments as
fo l 1 ows :

(1) t o provide descriptions or attributes and attribute values ("explain"
attachment) ;

(2) t o allow f o r system-generated questions t o be posed t o the user ("question"
attachment)

(3) t o allow for synonyms of attributes t o be used when typing the knowledge
base ("synonyms" attachment) ; and

(4) t o provide rationale for rules ("rationale" attachment).

Through the use of these attachments, the user could obta in descriptions of
attributes, a t t r i bu te values, and rules i f the user were unsure of what particu-
lar items meant. For example, an excerpt of a sample user session i s shown
below:

command sequencing p l a n n i n g aids :

(1) absent
(2) present

? 2

instrument management aids:
(1) absent
(2) present

? 2

i n i t i a l orbits:
(1) complex
(2) average
(3) simple

Command encountered-deferring current question

? explain 1

Refers t o a very complex and protracted i n i t i a l stabilization and a t t i t u d e
control.

C o n t i n u i n g previous line of questioning

65

i n i t i a l o r b i t :
(1) complex
(2) average
(3) simple

? exp la in 3

Command encountered--deferring cur ren t question

Refers t o very l i t t l e o r no special softw u i r e d f o r
i n i t i a l s t a b i l i z a t i o n and contro l .

Continuing previous l i n e of questioning

Other human f a c t o r design elements were included i n the expe
These included: prov id ing precautions against undesirable inputs through
supplying add i t iona l production rules, and having a "help" func t ion f o r the
inexperienced user.

A j u s t i f i c a t i o n f a c i l i t y , as p a r t o f KES, i s another special and important
fea ture which i s contained w i t h i n the exper t system prototype. The j u s t i f i c a -
t i o n f a c i l i t y i s v i t a l because the user can see how and why c e r t a i n a t t r i b u t e
values were determined, which creates t r u s t and b e l i e v a b i l i t y i n the exper t
system. I n KES, a j u s t i f i c a t i o n f a c i l i t y i s provided so t h a t conclusions can be
j u s t i f i e d i n the form:

a = b

reasons fo r t h i s statement:

c = d

f = g

(by ru le : x l)

An excerpt from a user session where the j u s t i f i c a t i o n process was invoked f o r
l eve l two func t iona l requirements i s shown below. This shows a p a r t i a l l i s t i n g
o f the " j u s t i f i e d " l e v e l two requirements:

f o r l e v e l two func t iona l requirements =

Reasons fo r t h i s statement:

model reac t ion wheel speeds . . ,

l e v e l one func t iona l requirements =
mission scheduling and planning

need f o r wheel speeds =

ru le46 (1.0))

6b

fo r l eve l two funct ional requirements =

Reasons f o r t h i s statement:

p red ic t system power usage . . .

3.0

l e v e l one funct ional requirements =
mission scheduling and planning

safety considerat ion =
present

need f o r power p r o f i l e repo r t =
present

(by ru le : ru le47 (1.0))

Va l ida t ion and Evaluat ion o f the Expert System Prototype

Thus far, three o f the four major steps i n cons t ruc t ing the knowledge base have
been discussed. The four th step i n knowledge base development was tes t i ng ,
ce r t i f y i ng , and evaluat ing the knowledge base and r e s u l t i n g expert system.

KES has two too l s which he lp i n v a l i d a t i o n of the expert system, namely the KES
Parser and Inspector. The KES Parser was automat ica l ly ac t i va ted whenever the
user needed t o run a sample session using KES. It detected a wide v a r i e t y o f
syntax e r ro rs and inconsistencies. Inspector, contained i n the product ion r u l e
subsystem of KES (KES.PS) , detects unattached a t t r i b u t e s and d i r e c t / i n d i r e c t
recursions, and der ives the actual h ierarchy from the knowledge base. These
t o o l s were employed and were very usefu l i n checking the knowledge base, both
syn tac t i ca l l y and s t r u c t u r a l l y .

Besides us ing the Parser and Inspector, backcasting and analogica l mapping were
used t o v e r i f y the v a l i d i t y o f the exper t system-derived requirements f o r one o f
the major funct ions o f a spacecraft, Solar Maximum Mission (SMM). Complications
occurred i n comparing the exper t system-generated requirements w i t h the docu-
mented requirements f o r SMM's generator function. There was very poor match-up
between the documented requirements and the expert system-generated requ i re -
ments, as demonstrated by the h igh r a t e of mismatch shown i n Table 1.

There has been a lack o f standardized language used over the years i n expressing
documented requirements from one s a t e l l i t e t o the next. Therefore, i n order t o
adequately map the exper t system-generated requirements t o the documented
requirements, a post hoc salvage operat ion took place i n which a " t rans la ted"
vers ion o f the documented requirements was developed (i .e., the t rans la ted
vers ion served as the r e s u l t s o f the mapping).

Analogical measurement was determined by us ing pe r t i nen t dimensions as expressed
i n Gentner's [13] and Silverman's [14] frameworks. The i r technique determined
the "goodness" o f an analogy (i.e., how we l l the f i t i s between the t a r g e t and
the base). The t r a n s l a t i o n process showed, on ly fo r a s ing le funct ion o f a
s ing le s a t e l l i t e , t h a t the exper t system fared we l l even though the match-up
(i .e. , exact wording) f a i l e d between the documented requirements and the expert
system requirements. These resu l t s , however, are severely biased because the
same person was used t o v a l i d a t e the expert system as we l l as t o develop it.

To evaluate the expert system prototype, the Ana ly t i ca l Hierarchy Process was
used t o quan t i f y sub jec t ive judgments made i n decision-making. I n order t o

67

I

I

i
0 0 0 I

I
I

. I
I
I
I

.I
I
I
I
I
8
I

0 0 0 '

0 . 4 0

O O Q

i
O I I

I
. I

'Ox," :
I .
I
I
I

i
I

*

N

I

I
I
I
I
I
I
I
I
I
8
I
3
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I

I
I
I
I
8
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
8

I
I
I
I
I
I
1
I
8
I
I
1
I
l a

f

:

:-

t

a

I
I
I
I
I
I
I
I
8
I
I

I
I
t
I

I m o o I
:
I

ti8

f a c i l i t a t e use o f the Ana ly t i ca l Hierarchy Process, a software package c a l l e d
"Expert Choice" [15] was used i n which r e l a t i v e p r i o r i t i e s were de

software designer
t h a t each user overal

t u s) based upon the
c r i t e r i a and the a l te rna t i ves . It

mple s ize was extremely small which
introduces b ias i n t o the evaluat ion resu l t s .

4.0 Lessons Learned from Developing the Expert System

There were some very h e l p f u l lessons learned from developing the exper t system
prototype f o r NASA CMS software requirements determination. The exper t system
cons t ruc t ion h in t s , along wi th those from Hayes-Roth e t a l . [18], Feigenbaum e t
a1 . [19] , Parsaye [20], Liebowi tz [21-23], and Johnson [24] , are shown below:

Task Sui t a b i 1 i ty

o Focus on a narrow spec ia l t y area t h a t does no t invo lve a l o t of commonsense
know1 edge.

Select a task t h a t i s ne i the r too easy nor t o o d i f f i c u l t f o r human experts. o

o

o

o Expert systems could have great payof fs i n mundane tasks, no t necessar i ly

Define the task very c lose ly .

Commitment from an a r t i c u l a t e expert i s essent ia l .

hero ic ones.

o P ick a task t h a t w i l l have a s i g n i f i c a n t impact o f value t o the organiza-
t i on .

o Make sure there i s "standardized" language being used w i t h i n the task.

o Become f a m i l i a r w i t h the probl. before beginning extensive i n t e r a c t i o n

o C lea r l y i d e n t i f y and chara mportant aspects o f the problem.

o Record a de ta i l ed pro toco l o f the exper t so lv ing a t l e a s t 1 p ro to typ i ca l

xpert.

case

o Choose a edge engineering t o o l o r a rch i tec tu re t h a t minimizes the
representa 1 mismatch between subproblems.

69

Table 2s Evaluation Criteria

Criterion
o A b i l i t y to

update

o Ease of Use

o Hardware

o Cost-Effectiveness

o Discourse

Content)
(Input/Output

o Quality 6f decisions,
advice, and' 8 .

, performance

. . o Design time

0 it??
reflect changes
in spacecraft
characteristics
and CPS software
functional
requirements,

Refers to clear . (B)
understandability .(GI
and user-
friendliness

I features.

Refers to the (B)

-
System's
Efficiency

Human-engineerin
Quality o f t h e
Xuman-Computer

Portability

computer equipment
Zidr '-de%erminfng

necessary (G)' System's
Efficiency

CMS requirements

costs and benefits
involved in
determining CM[s
requirements. . .

Refers to the -. (9)

Refers to the (3)
reasoning approach, (G 1
help capabilities,
and explanation
facilities.

Refers to the (B)
accuracy knd (G 1
completeness of
responses.

Refers to the (B)

r6quirements for
a satellite.

Cost LEf f ec t ivene ES

Understhdabili ty
Correctness of the
Reasoning .
Techniques Used

Reliability
Quality of the
System' s. Dec isi o m
and, Advice

Tes$ability

70

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Start building the prototype version of
first example is well understood.'

Identify and separate the parts of the problem that
AI programs in the past.

Build in mechanisms for indirect reference.

Separate domain-specific knowledge from general problem-solving knowl edge.

Aim for simplicity in the inference engine.

Don't worry about time and space efficiency in the beginning.

Find or build computerized tools to assist in the rule-writing process.

Pay attention to documentation.

Don't wait until the informal rules are perfect before starting to build
the system.

When testing the system, consider the possibility of errors in input/output
characteristics, inference rules , control strategies, and test examples.
It is good to have redundancy in the expert system in order to give stabil-
ity to the system (have multiple evidence).

Have dynamic explanations not static ones.

Sometimes it might be better to try to get the surface-level rules as
opposed to the deep-1 eve1 knowl edge.

From the beginning, the knowledge engineer must .count on throwing efforts
away.

There is a perfect task for every expert system shell or tool, but there is - not a perfect shell or tool for every task.

Extend Prototype

o Build a friendly interface to the system soon after the fi t prototype is

O P o users can record t ir complaints abo

f i ni shed .

S ithout the know engi neer being there.

sys tem.

ayered explanations--ones for the
s for the end

o If none

71

o Dealing with anything but.facts implies unce tY

o The expert system must have very easy be
modified so that new informatio ion
deleted.

o

o

o

Expert

o

o

o

o

o

Use the terms and methods that the expert us

If a rule looks big, it is.

If several rules are very similar, look for an underlying do

You can't be your own expert.

Give the expert something useful in the way to building a large system.

Expert will modify rules and values until he/she finds the right answer.

Insulate the expert, as well as the user, from technical problems.

Be careful about feeling expert.

Evaluating the System

o Ask early about how the expert would evaluate the performance of the system
(i.e., criteria, error rate, etc.).

o

o

With these tips from the sources mentioned above, the job of the knowledge
engineer will be made much easier.

4.1

Tom Davis [25], program manager for artificial intelligence in NASA's Advanced
nd Technology Office at Kennedy Space Center, offers ten lessons for
in building expert systems.

Clearly identify the problem to be solved by the expert system and pick one
that you think is much small. Howev is problem is
important to the organi

2. It is a good idea to use consultants while developing your expert system.

The user interface is crucial to the ultimate acceptance of the system.

Use blind verification studies for testing and validation.

These are:

1.

72

4.

5.

6.

7 .

8.

9.

10 *

5.0

Do a feasibility study to determine if the costs of developing this expert
system will support the benefit that will be derived from it.

Find a real expert to spend time with. The fewer the better,

Use microcomputers for early development and prototyping and then move to
specialized hardware. This way you can verify if it is feasible to model
this problem with an expert system and save a lot of money i f it isn't.

Consider. using an expert shell for development purposes because it takes
someone about five years to become a proficient programmer in a symbolic
1 anguage.

For large-scale applications use hardware that is specifically designed for
symbolic software. However, you should carefully analyze which software is
best for your application because every hardware manufacturer seems to have
their own symbolic software that they think is best. Before any hasty
decisions are made you should talk to people who have had experience with
that hardware and software and consider their opinions.

Train personnel internal 1 y to be 'I know1 edge engineers . 'I It is extremely
expensive to hire one with experience.

Don't hire Ph.D.s to develop the project; only use them as consultants.

Conclusions

From the results of this research, an expert system approach to determining a
sound "first cut" at developing CMS software functional requirements for a new
satellite has the potential to be a viable alternative to the status quo.
Biases generated from the validation and evaluation procedures of the expert
system prototype greatly cloud the results of this prototype's effectiveness.
More users are needed to evaluate the expert system as well as the need to
perform backcasting of more satellites, using impartial val idators, to further
validate the expert system. If continued work is done in these areas, then the
expert system approach to developing CMS software functional requirements has
the potential to contribute to the following goals:

(1) help in standardizing requirements development and language and, in turn,
contribute to one of Goddard's goals of minimizing the uniqueness of
command management systems;

(2) aid in facilitating the acquisition and representation of expert knowledge
on CMS software functional requirements determination;

(3) enhance the CMS software designer's use of the analogy approach; and

(4) provide time and cost improvement over the manual status quo for developing
CMS software functional requirements.

This paper is based upon the author's dissertation research [21]. Many indi-
viduals contributed their time and advice during the development of this

73

research. Great apprec iat ion i s extended t o Barry S i 1 verman , Sam Rothman ,
Ernest Forman , Thomas Nagy, E r i k Winslow, Homer Sewel 1 , James Dinwiddie, Robert
Waters, Peter Kurzhals, Thomas Grenchik, Thomas Pfarr, Barbara Greenall, and
R i t a Hodge. Special thanks are f o r P a t r i c i a L i g h t f o o t , Andrew Ferrant ino, Nancy
Goodman, and Robert D u t i l l y . A tremendous amount of apprec iat ion i s a l so due t o
Software Arch i tec tu re and Engineering , Inc. and Decision Support Software. Par t
o f t h i s research was supported by a NASA Fellowship, NGT-09-010-800.

The views expressed i n t h i s paper are s o l e l y those of the author and do no t
r e f l e c t views o f those a t NASA Goddard Space F l i g h t Center.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

Sewell, H.B. , "Analogical Reasoning Theory," (i n formulat ion) , Department
of Engineering Administrat ion, George Washington Un ivers i ty , Washington,
D.C. 20052, 1984.

Silverman, B.G., "The Use o f Analogs i n Systems Engineering: A Software
Programming Case Study," Engineering Admin is t ra t ion Report, George Washing-
ton Un ivers i ty , Washington, D.C. 20052, 1983.

Silverman, B.G. , "Potent ia l Software Management Cost and Produc t i v i t y
Improvements: An Analogical View," IEEE Computer, May 1985.

Silverman, B.G., "The Software Engineering Paradox: Unexploi ted Cost
Savings & P roduc t i v i t y Improvements ,I' Journal o f Test and Evaluat ion , Vol .
V , No. 1, January 1984.

Reggia, J.A. and B.T. Perricone, KMS Manual , Department o f Mathematics,
Un ivers i ty o f Maryland', January 1982.

Software Arch i tec tu re & Engineering, Inc. , Knowledge Engineering System:
Knowledge Base Author 's Reference Manual, Ar l ington, V i rg in ia , March 1984.

Software Arch i tec tu re & Engineering, Inc., Knowledge Engineering System:
General Descr ip t ion Manual, Ar l ington, V i rg in ia , August 1, 1983.

S h o r t l i f f e , E.H., Computer-based Medical Consultations: MYCIN, American
Elsev ier : 1976.

Buchanan, B. and E.H. S h o r t l i f f e , Rule-Based Expert Systems: The MYCIN
Experiments o f the Stanford Heur i s t i c Programing Pro ject , Addison-Wesley,
1984.

10. Al len, R.B. , 'Cognitive Factors i n Human I n t e r a c t i o n w i t h Computers," i n
D i rec t ions i n Human/Computer In te rac t ion , ed. by A. Badre and B. Shneider-
man, Ablex Publishing, 1982.

11. Savaqe, R.E. and J.K. Habinek, "A M u l t i l e v e l Menu-Driven User In te r face :
Design and Evaluat ion Through Simulat ion , 'I i n Human Factors i n Computer
Systems, ed. by J.C. Thomas and M.L. Schneider, Ablex Publishing, 1984.

74

12.

13.

14.

15.

16.

17.

18.

19.

Software Arch i tec tu re & Engineering, Inc., Knowledge Engineering System:
Knowledge Base Author 's Reference Manual, Ar l ington, V i rg in ia , November
983.

Gentner, D., "Structure-Mapping: A Theoret ica l Framework fo r Analogy,"
Cogni t ive Science 7, 1983.

Silverman, B.G., "A Good Analogy and How t o Measure It," I n s t i t u t e f o r
A r t i f i c i a l I n t e l l i g e n c e Technical Report, George Washington Un ivers i ty ,
Washington, D.C. 20052, 1984:

Decision Support Software, Inc., Expert Choice Manual, McLean, V i rg in ia ,
1983.

Boehm, B., J.R. Brown, H. Kaspar, M. Lipow, G.J. MacLeod, and M.J. Mer r i t ,
Charac ter is t i cs o f Software Q u a l i t y , North Holland, 1978.

Gaschnig, J., P. Klahr, H. Pople, E. Shor t l i f f e , and A. Terry, "Evaluat ion
o f Expert Systems: Issues and Case Studies,'' i n Bu i l d ing Expert Systems,
ed. by F. Hayes-Roth, D.A. Waterman, and D.B. Lenat, Addison-Wesley, 1983.

Hayes-Roth, F., D.A. Waterman, and D.B. Lenat. Bu i ld ing Expert Systems,
Addison-Wesley, Reading: MA, 1983.

Feigenbaum, E.A. and P. McCorduck. The F i f t h Generation , Addison-Wesley,
Reading: MA, 1983.

20.. Parsaye, K. T u t o r i a l on Expert Systems. Expert Systems i n Government
Conference, IEEE, Washington, D.C. , October 1985.

21

22.

23.

24.

25.

Liebowitz, J., "Determining Funct ional Requirements f o r NASA Goddard's
Command Management System Software Design Using Expert Systems,'' D isser ta-
t i on , George Washington Univers i ty , Washington, D.C. , December 1984.

Liebowitz, J. Notes on Expert Systems: A P rac t i ca l App l ica t ion o f A r t i f i -
c i a l I n t e l 1 igence, Continuing Engjneering Education Program, George
Washington Un ivers i ty , Washington, D.C., 1985.

Liebowitz, J. Expert System Design f o r P rac t i ca l Use (i n formulat ion) ,
1986.

Johnson, J. Expert Systems: For You?, Datamation, February 1984, pp.
82-88.

Handel, S. "NASA's Expert System Advice," Appl ied A r t i f i c i a l I n t e l l i g e n c e
Reporter, Un ive rs i t y o f Miami ICSRI , Vol. 3, No. 2, February 1986.

75

THE DESIGN AND APPLICATION OF A
TRANSPORTABLE INFERENCE ENGINE (TIE1)

David R. McLean

Bendix Field Engineering Corp.
10210 Greenbelt Rd., Suite 310
Lanham, Maryland 20706

Abstract

A Transportable Inference Engine (TIE11 system has been
developed by the author as part of the Interactive
Experimenter Planning System (IEPS) task which is involved
with developing expert systems in support of the Spacecraft
Control Programs Branch at Goddard Space Flight Center in
Greenbelt, Maryland. Unlike traditional inference engines,
TIEl is written in the C programming language. . In the TIEl
system, knowledge is represented by a hierarchical network
of objects which have rule frames. The TIEl search
algorithm uses a set of strategies, including backward
chaining, to obtain the values of goals. The application of
TIEl to a spacecraft scheduling problem is described. This
application involves the development of a strategies
interpreter which uses TIEl to do constraint checking.

Introduction and Motivation

The search for'a balance between complexity and generality,
on the one hand, and simplicity and narrowness of
application, on the other, has lead many AI practitioners to
consider implementing custom built tools. During the course
of investigating various commercial expert system shells,
it became evident that choosing the right shell was no easy
task. Lee and Roach [1986], note that generally the
available tools impose too many restrictions or they are not
user friendly. Most hybrid tools like ART and KEE are not
only expensive but should be considered as research tools
rather than practical tools that can be used for rapid
prototyping, Harmon and King [1985].

From another point of view, Technology Development Chief
Robert H. Brown of Johnson Space Center, Marsh [1985], notes
that NASA cannot get into a mission-critical situation where
they have to depend upon a private company for help. Mr.
Brown wants to have the source code for his own expert
system shell written in the C language. NASA is also
becoming increasingly concerned about the cost of commercial
software. Custom tools have a number of advantages which
are listed below:

7b

1. The source code is read
extensions and enhancem

2. There are no licensing
is copied or ported to

3 . Custom tools are design
application to the task
to "force fit" the tool to the application.

4 . Custom tools written de to execute
~ faster than most comm able tools.

Many investigators, including Waterman [1986], have
suggested that the development costs of custom inference

.engines are prohibitive. In addition, they state that
developing an expert system in a general-purpose programming
language such as FORTRAN, PASCAL, or C further increases the
development time. These arguments are certainly valid if
the inference engine has to be developed from scratch for
each application. However, if the inference engine being
developed is general enough to be of use in a large number

-' of applications then the development cost can be recovered
many times over. The advantages of custom tools discussed
in this section have provided the major motivation for the
development of the TIEl system.

Choice of Implementation Language for TIEl

The following. requirements were identified for the
implementation language for the TIEl system:

1. Portablility was seen as the most important
requirement for TIE1.

2. It was necessary for TIEl to interface well with
various types of hardware.

3 . It was necessary for TIEl to be implemented in
a structured, high level language for ease of
modification and maintenance.

Traditionally, inference engines have been written in LISP
and PROLOG because these languages were written specifically
for AI applications. Unfortunately, these languages are not
standard enough across the variety of hardware required for
our applications. Our strict requirements for interfacing
and portability essentially eliminated these languages from
final consideration.
The strict requirements noted above suggested that we
consider a language like C. C is very portable and was
designed for writing interface software. Also, a current
trend in AI is to develop a system in a LISP environment and

77

then translate the code to a compi

on and co
appears to be ent
technology.

Traditionally, C has not been used to develop A I systems
because debugging and compila re so time consuming.
The author wou like to suggest that this notion is

’ somewhat dated. w high speed microprocessors, such as the
MC68020, along with good program development strategies,
such as modular structuring, have made ompilation times
acceptable. In addition, there is an ever increasing number
of debugging tools available today. The small price paid in
compilation and debugging time is a bargain when one
considers the benefits of C: portability, execution speed,
and maintainability.

TIEl Knowledge Representation

A primary goal for the representation of knowledge in the
TIEl system was to provide a structure which was easily
readable by people yet rich enough to capture a large
variety of knowledge types. The notions of objects and
frames were incorporated because of their generality and
flexibility. The TIEl knowledge representation structure is
based on a hierarchical network of objects. The .overall
structure of each object is as follows:

1. Name of object
2. Value of object
3 . Default value of object
4 . Attribute list
5 . Instance list (set of frames).

An attribute list consists of attributes with the following
structure:

1. Name of attribute.

2. Text to prompt user for input value or
the token ’<INFERRED>’ if the attribute
is inferred.

70

3 . A list of possible values, o r a key
word such as ’range:’ followed by a
range specification, or ’calc:’
followed by an expression involving
a calculation.

4 . A ’ . ’ on a line by itself marks the
end of an attribute.

An instance list consists of a set of frames with each frame
having the following structure:

1. Name of frame.

2. A rule which specifies the conditions
for a true instance of the object.

3 . A ’ . ’ indicating the end of the frame.

The reason for calling these structures frames will be
clarified when the syntax of frame structure is discussed.

TIE1 Knowledge Base Syntax

Attribute Syntax:

The syntax of attributes is designed for readability by both
machines and users. A ’ ; ’ in column 1 denotes a comment
line. Blank lines, leading blanks, and tabs are ignored,
which allows the user to use spacing and.indentation to show
logical structure. A list of indefinite length is terminated
by a ’ . ’ on the next line. A ’ , ’ character is used to
denote an ’OR’ or to delimit a range, depending upon the
context.

Attribute prompts begin and end with a ”” and can
presently be five lines in length. Attribute names can be
of any length with imbedded blanks. The characters ’ () + -
/ * % , ’ are considered special and should not be used when
an attribute is to be used in a calculation. Each possible
value for an attribute must be on a separate line. Some
examples of attributes and their syntax are listed below.

filter selection

“What filter selection do you require ? ”
none
red
blue

exposure duration
<INFERRED>

79

tape given

"What amount of
(in feet)"

range: 0, 500

tape remaining

This null prompt I * 8 ,

calc: tape given

Frame Syntax:

tape do you have now ?

is used as a place holder only.

- (stop time - start time) * 10

A frame consists of a frame name and a frame rule which
describes a true instance of the object in terms of the
object's local attributes. If the frame rule is found to be
true then the frame name is returned as the value of the
object. The frame rule has the syntax of attribute slots
instead of the more traditional if-then syntax. Each
attribute slot appears on a separate line with its attribute
name on the left. To the right of the attribute name is a
relational descriptor (such as eq, to be described in the
next section), and to the right of the relational descriptor
are one or more attribute values. Each line of the frame
rule .is connected with the following line by an implicit
logical AND unless the previous line ends with a comma, in
which case the lines are connected by an implicit logical
OR. A single attribute name can be associated with a number
of disjunctive values on the same line by separating the
values with commas. Two examples of frames are
below.

Tape dump (HAO) scheduled through TDRSS

instrument eq Tape dump (HAO)
start time ra TDRSS start, TDRSS
stop time ra TDRSS start, TDRSS
tape remaining gt 0

Gamma ray spectrometer scheduled

listed

stop
stop

instrument eq Gamma ray spectrometer
start time ra day start, day stop
stop time ra day start, day stop
start time nr SAA start, SAA stop
stop time nr SAA start, SAA stop

80

Attribute slots in frame rules may use several types of
relational descriptors. The relational descriptors which
are permissible are listed below.

is equal to
is not equal to
is less than
is less than or equal to
is greater than
is greater than or equal to
is in the range of
is not in the range of

A frame, then, can be thought of as an inverted if-then rule
(a then-if rule) with the value to be assigned to a goal
equal to the frame name and the conditions for the
assignment in the body of the frame. This syntax provides a
more clearly structured rule than if more than one attribute
per line were allowed. In addition, this syntax is also easy
for the machine to read and'requires no compilation.

There is no syntactical difference between variables, which
can be names of integer attributes, and string attribute
values. When an attribute is tested, it evaluates to an
integer, if appropriate, otherwise it evaluates to its
string name. Only integer numeric types may be used in the
current version of TIE1.

The builder of a knowledge base is at liberty to choose a
style which expresses the structure of the knowledge most
clearly, as long as the basic syntax rules are adheared to.
The use of comments is indicated by a semicolon in the first
column and can add to the readability of the knowledge base,
as is illustrated in the following example from the "animals
world" domain, Winston and Horn C1984-J:

; knowledge base name

bird
T default value:

false

I attributes:

has feathers
"Does the animal have feathers ? "
Yes
no

; etc

I frames :

true
has feathers eq
flies eq
lays eggs eq

has feathers eq
flies eq
lays eggs eq

false

; etc

Yes
yes, no
yes

no
yes, no
yes, no

A unique feature of TIEl is that rules are tested in a
context-sensitive manner. When the value of an object is
being sought, only those rules which are instances of the
object being sought are considered at that time. For
example, if the value of the object being inferred is
represented by two frames (true and false) then just these
two frames would be considered during that inference step.
This feature not only increases the-execution speed but also
organizes the knowledge so that modifying the knowledge base
and tracing the action of the inference engine is much
easier.

The TIEl Inferencing Method

The basic inferencing method used by TIEl is a backward
chaining, hypothesize and test search. Each relevant frame
is tested in the order that it is listed in the knowledge
base. Frames which are shown to be untrue are rejected.
After all the attributes of the frames are tested according
to the implicit rules that they capture, the name of the
first frame which is true is returned. The capability of
returning more than one value will be implemented if a need
for this feature develops. If no frame is found to be true,
the default value of the object is returned.

The search strategy TIEl uses is to look for imbedded values
first. If none are found, then TIEl looks to see if the
value is already known. If the value is still unknown, TIEl
checks to see if a calculation is required. If not, then
TIEl tries to infer the value from other knowledge.
Finally, when all else has failed, the user is asked for a
value.

The TIEl Search Algorithm

TIEl’s search algorithm is goal directed and uses a set of
strategies to obtain the values of goals. The following is
an outline of the algorithm:

82

1. Find the object associated with the goal’s name.

Find and test

a. Select the ne Ute whose value is

b. Make this attribute the new goal to be
obtained.

c. Use the following strategies in the order
they are listed to obtain the goal’s value.

i. If an imbedded value exists then
use the imbedded value.

ii. Otherwise, if the value is already
known (on the facts blackboard)
then use this value.

iii. Otherwise, if a calculation is
required then it is performed.

iv. Otherwise, if the goal is of type
inferred, then use the TIE1 search
algorithm to obtain its value
recursively.

v. Otherwise, ask the user f o r the value.

d. Write the attribute value on the facts
blackboard.

e. Use the obtained attribute value in the rules
section of each frame and reject those frames
whose rules are inconsistent with the value
obtained,

f. If all the frames have been rejected then set
the goal’s value to the default value of that
object .
herwise, if all the tes have known

values then set the g lue to the name
the first nonrejected frame.

h. erwise, if ributes whose
e to find and test
s of ib

3 . Report the obtained value of the goal.

The User In

the system
character string type

uild new frames.

Summary of TIEl’ s Features

* TIEl is written in C for portability.

* No compilation of the knowledge base is required
before TIEl can be used.

* TIEl can be used in a stand-alone mode or in an
imbedded mode.

* In the imbedded mode, the system automatically
builds messages to explain why requests for
resources are rejected.

* TIEl has a learn mode which allows the user to
easily add new frames to the knowledge base.
TIEl does this by using the attributes section to
prompt the user for new instance frames.

* TIEl has a trace option which allows the user to
view the list of contending hypotheses as each
new piece of data is added to the system.

* TIEl has a minimum-question mode which allows a
minimum amount of evidence to establish the truth
or falsehood of a hypothesis. In this mode,
the system does not ask an exhaustive set of
questions.

* TIEl has a debug mode which builds messages to

* TIEl allo
file so t

explain why a particular hypothesis is rejected.

is feature

*

*
le inference

84

Future Feature

a1 features will be imple in the TIEl system
d. Some features under co ation are:

1. More Lengthy explanations.

2. Certainty factors.

3. The ability to return more than one value

4 . Floating point arithmetic.

A Spacecraft Scheduling Application using TIE1:
Interactive Experimenter Planning System (IEPS)

TIEl is being used in this system scheduling spacecraft
tape recorder and instrument events. Orbit data is read by
the system and heuristics are used to indicate when
particular events may be scheduled. Events can be scheduled
interactively or in a batch (automatic) mode.

The main components of IEPS are described below:

1. The 'TIE1 system and its associated knowledge base
which act as the constraint checker.

2. A batch scheduler with its associated knowledge
base which is used in the automatic mode.

. 3 . A user interface which displays resource
information graphically or numerically.

4 . Miscellaneous files:

. a. Input schedule file
b. Output schedule file
c. Configuration file
d. Orbit 'data file
e. Output messages file

The following two diagrams show the overall relationships
between the compo . In m , the
configuration file by TIEl ro basic
information required f o r the scheduling process. The main
difference between the two modes is th er and user
interface are replaced by the batch sch en the batch
option is selected.

85

Interactive Scheduler:

Orbit Data onstraint
K

Batch Scheduler:

In the interactive mode, the user performs scheduling via
the user interface and constraint checking is performed as
user requests are made. The following is an example of a
configuration file with the interactive mode selected:

Start date:
850805

Number of days to be schedu
4

e (batch o r interactive):

Conflict knowledge base file:
smm. pro

86

Orbit data file:
smm. orb

Input schedule file:
new. smm

Output schedule file:
smm. out

Output error file :
smm. err

Names of events to-be read.from orbit data file:
Daylight
South Atlantic Anomaly
Radio frequency interference
TDRSS viewing periods
GSVP (Ground station viewing periods)

In the batch mode, IEPS uses the request knowledge base to
automatically generate a schedule. This knowledge base
contains the knowledge of an expert scheduler. After a
schedule is built ifi the the batch mode, the user may edit
the schedule in the interactive mode. The batch scheduler
has the following features:

1. The user can specify events to be scheduled by
creating a file which is read and interpreted by
the scheduling system.

2. The user can specify when the event is to be scheduled,
the duration of the event, and the frequency of the
event.

3 . The user can also specify a set of alternative
scheduling strategies to be tried in case the first
event requested is denied because of scheduling
constraints.

4 . The scheduling strategies which are currently
implemented are:

WHEN name of event window within
which to schedule

BIAS bias start time by a given amount

AFTER try scheduling after the
conflicting event

DURATION specify a new event duration

EWINDOW use the entire window for the
event

87

NEXT use the next available window for
the event

SQUEEZE try to squeeze (move to one side)
the conflicting event

BUMP shift start and stop times of
the event by a predefined amount

Structure of the Strategies Knowledge Base

The strategies knowledge base contains a list of events to
be scheduled. These events have a priority implicitely
determined by the order in which they are listed. Each
event request has the following structure:

1. Name of event to be scheduled.
2. Frequency of event to be scheduled

3 . Duration of event.
5. A list of strategies for scheduling the event.

The user may also specify a list of reserved time slots for
any event or resource.

(every nth window).

Syntax of Strategies Knowledge Base

The syntax of the strategies knowledge base is similar to
TIEl’s knowledge base syntax. First, the name of the event
to be scheduled is stated. Then, the frequency of the event
to be scheduled is indicated by a positive integer and its
duration is specified in hours and minutes. Next,
strategies are indicated by a list of key words which
specify the actions to be taken during the scheduling
process. Some of these key words and the arguments they can
take are shown in the example which follows:

Tape dump (HAO)
9 frequency of event:

4
, original duration request:

0:15
Y strategies:

WHEN TDRSS viewing periods
BIAS 0: 10
DURATION 0:lO

VP (Ground station viewing periods)

88

The Strategies Interpreter

Scheduling strategies are tried in the order they are
specified until the event is successfully scheduled or the
list is exhausted. In this respect, IEPS can be thought of
as "opportunistic". The structure of the constraint
knowledge base is such that there are frames which contain
constraint information for each event being scheduled. If
all of the constaints are satisfied, then the event is
scheduled. s returned from the
constraint checker and of the strat ies tried by the
interpreter. This log can then be examined and analyzed for
refinement of the strategies.

A log is kept of the messa

It is interesting ,to note that the system works somewhat
like a production system with the if and then parts
organized into separate knowledge bases. The strategies
interpreter, being the then part, forward chains through its
request and strategies list while the constraint checker,
being the if part, backward chains through its object
hierarchy.

Conclusions

During the three months that TIEl has b%Gn used 'for
evaluation, its ease of use and maintence, its
extensibility, and its execution speed have all surpassed
expectations. These results and the fact that the IEPS
prototype uses "real" orbit data to generate a schedule
demonstrate that TIEl is already powerful enough to be of
use in solving "real-world'' problems.

The portability of IEPS (and TIEl) has been demonstrated in
a number of ways. TIEl was originally developed on an IBM
PC-XT. It' was then ported to an Integrated Solutions
MC68020-based workstation. This porting task took less than
one week. Most of this time was spent becoming familiar
with the workstation's cursor package. Because the user
interface is completely separate from the inference engine
it should be possible to easily port TIEl to any environment
which has a C compiler.

Acknowledgements

The author would like to thank Ronald Littlefield and David
Beyer of Bendix Field Engineering Corporation for their
input and assistance in the preparation of this paper. Jay
Johnson, also from Bendix, wrote the calculator portion of
TIE1. This work was supported by NASA contract NAS5-27772.

89

._ -_ References

Brundisk, F., J. Dumer, T. Hanratty, P. Tananbaum,
"GENIE: An Inference Engine With Diverse Applications",
Proc. IEEE Second Conference on Artificial Intelligence
Applications,l985.

Daniel, L., in T. O'Shea and M. Eisenstatdt (ed.),
Artificial Intelligence Tools, Techniques, and Applications,
"Planning and Operations Research", Harper & Row Pub.,
N.Y. pp. 423-452,1984.

Hankins, G. B., J. W. Jordan, J. L. Katz,
A. M. Mulvehill, J. N. Dumoulin, J. Ragusa,
"Expert Mission Planning and Replanning-Scheduling",
Proc. IEEE 1985 Expert Systems in Government Symposium,
pp. 43-49,1985.

Harmon, P., D. King, Expert Systems: Artificial Intelligence
In Business, John Wiley & Sons, Inc.,1985.

Kerninghan, B. W., D. M. Ritchie,
The C Programming Language, Prentice-Hall Inc., 1978.

Lee, N. S., J. W. Roach, "GUESS/l: A General Purpose Expert
System Shell", Porc. IEEE Expert systems in Government
Symposium, pp. 275-283,1985.

Marsh, A. K. (ed.), Advanced Military Computing Including
Artificial Intelligence, Pasha Pub. Inc., Vol 1, 445,1985.

Szolovits, P., "Expert System Tools and Techniques: Past,
Present, and Future", Proc. Artificial Intelligence: Current
Applications, Trends and Future Opportunities, 1986.

Tassle, R. V., "Languages Then and Now",
The DEC Professional, Professional Press, Inc.,1985.

Waterman, D. lA., A Guide to Expert Systems,
Addison-Wesley Pub. Co.,1986.

Winston, P. H., Artificial Intelligence (Second Edition),
Addison-Wesley Pub. Co.,1984.

Winston, P. H., €3. K. Horn, LISP (second editon),
Addison-Wesley Pub. Co.,1984.

A Prototype Expert System in OPS5
for Data Error Detection

James Rash

NASA Goddard Space Flight Center
Telecommunication Systems Branch, Code 531

Greenbelt, Maryland

A prototype expert system has been developed in the OPS6
language to perform error checking on data which
spacecraft builders/users supply to the NASA Goddar-d Space
Flight Center for processing on the Communications Link
Analysis and Simulation System (ULASS) computer. This
prototype expert system, called Trajectory Preprocessing
System (TRAPS), contains 49 rules and at present runs on
an IBM PC in the OPS5+ software package from Artelligence,
Inc. In its operational phase, TRAPS will run. in the
Oak Ridge Production Language (ORPL) on the CLASS computer
(a Perkin-Elmer 3244 supermini), ORPL, an implementation
of OPS5 by the Oak Ridge National Laboratory in MULTIFORTH-
on a Hewlett-Packard 9836 desktop computer, is now being
ported to SS-FORTE on the CLASS computer. This paper
discusses the expert system problem domain, development
approach, tools, results and future plans stemming from
the TRAPS project.

----------I- INTRODUCTION

G&llSS

The Communications Link Analysis and Simulation
System (CLASS) comprises several major software systems
(written in FORTRAN) designed to analyze space and ground
communications system performance [GOdfrey, 1983 and
19841. CLASS was developed by NASA primarily for the
prediction of user spacecraft communications system
performance through the Tracking and Data Relay Satellite
System (TDRSS) (the term "user spacecraft" or "user
vehicle" is used to refer to a spacecraft which is
utilizing services provided by TDRSS). CLASS
capabilities are not limited to TDRSS. In fact, CLASS has
been applied to a broad range of problems in the design
and evaluation of ground and space communications networks
and systems. End-to-end as well as system-by-system
analysis can be accomplished through CLASS, CLASS is

91

designed for convenient, reliable use by personnel with a
wide variety of backgrounds in telecommunications systems.

The basic functions facilitated by CLASS are: (1)
communications system design, (2) communications system
performance analysis, evaluation, and prediction, (3)
spacecraft mission planning, and (4) post-launch trouble
shooting of communications problems. Re1 evan t
environmental factors such as interference from the SUR
and extraneous radio frequency (BF) sources can be
included in the analyses and simulations.

CLBSs C_ornE,u&_eZ

The CLASS computer, located at NASA’s Goddard Space
Flight Center (GISFC) in Greenbelt, Maryland, is a Perkin-
Elmer 3244 supermini with 16 megabytes of RAM, serving up
to 32 simultaneous users locally or in distant cities. It
will soon be upgraded to a Perkin-Elmer 3280 with multiple
processors.

CLAES osex!!
Users of CLASS include spacecraft builders and

designers who must establish that their spacecraft
communications systems meet prescribed requirements.
Other CLASS users include the scientific investigators and
teams of spacecraft operations personnel who plan and
direct specific mission activities for their spacecraft.
In addition, NASA analysts utilize CLASS for analysis and
simulation of communications links between NASA ground
stations and the Tracking and Data Relay Satellite (TDRS),
and in trouble shooting user spacecraft communications
problems.

Making effective use of the numerous, complex CLASS
capabilities has been very demanding upon the CLASS users.
During the past two or three years it has been realized
that the users needed intelligent assistance from the
CLASS software as they prepared and conducted their runs.
Thus arose the- concept of a CLASS control program to
provide intelligent assistance and a higher level of
internal management of software modules during runs. It
was concluded that expert systems would be needed to
provide such capabilities.

Further, certain other types of problems within the
scope of CLASS gave impetus to develop expert system
capabilities for CLASS. First, there was frequently a
need to do fault diagnosis on the co ications links to
a TDRS or user Spacecraft. This recognized as a

92

Baain cnnEm!inLs
constraints on expert system software for

CLASS are that it must be imbedded within the CLASS
environment, interface efficiently with existing CLASS
programs and run in a nultiple-user mode. An additional
consideration was that of a limited budget.

bltarnnthnss
Following the initiation a year ago of efforts

intended to bring expert system technology into the CLASS
environment, it was found that supported software for
expert system development on the Perkin-Elmer 3200 series
computers waa not available. Nonetheless, there remained
a need to develop expert system capabilities for CLASS.
The situation was analyzed in terms of three general
categories of alternatives:

A. High-cost approach.

-- Sophisticated development system.
-- LISP workstation (Symbolics, LMI,

etc.).

-- Expert system builder package (ART,
K E B , etc.).

-- Advantages: more efficient expert
a ys t ems , more rapid prototyping,
greater productivity, good

ion8 support

a1 cost for
and training;

use of results

ren t-user

ral purpose

93

B

sible local
vendor support (KES 11).

-- Disadvantages: Qua
and final coat o
indeterminate; date of availability
likely to be unacceptable; doubtful
availability of programming and
applications support within NASA with
regard to such a tool.

C. Low cost approach.

-- Use OPS5 aa a tool with which to begin
development of expert systems.

-- Advantages: OPS5 is one of the most
widely used high-level expert system
languages; availability of support
within NASA; availability of low cost
versions of OPS5 for the IBM PC and
(in a beta test version) for the then-
existing CLASS workstations;
possibility of implementing OPS5 on
the CLASS mainframe.

-- Disadvantages: Lower productivity
because OPS5 is less aophiaticated
than high-priced tools; time required
to implement OPS5 on CLASS mainframe.

----------- Alternative Selection ---------
The first alternative, the high-cost approach, was

eliminated for two reasons: (1) high cost and (2)
incompatibility w irement for embedded,
multi-user operati

d to be a disadvantage in the . In addition, the
inherent uncertainties

was not acceptable.

to adopt a low-cost, low-risk
rt-up language for developing

94

------- INITIAL PROBLEY ------ --- SELRCTION -----
After consideration of several ossible applications

of expert systems for CLASS, it was decided that an expert
system to preprocess user trajectory data would be
constructed. One of the considerations in choosing this
problem was that it seemed to be a simple, straightforward
problem for demonstrating the approach to be used.

Another consideration centered on the value of a
comparison of the OPS5 language with FORTRAN (the language
of the existing CLASS applications). The problem selected
was one which was known to be solvable with FORTRAN and
was believed to be solvable with OPS5. The main factors
to be compared were processing efficiency and program
maintainability. It was projected that OPS5 would provide
adequate processing efficiency for the problem selected,
as well as a significant advantage in program
maintainability. Program maintainability appeared to be
particularly important in thi8 problem domain because of
the many possible variations in mission and spacecraft
data requirements, which would necessitate development and
maintenance of many code modules.

An_alysis o_f Trsdnsfsrins
User spacecraft missions are considered to fall into

two categories: planetary probes and earth orbital
missions. Typical CLASS analysei of a planetary mission,
such as Centaur Galileo, may involve processing several
hundred possible trajectories as specified by the CLASS
user. Each trajectory will have 150 to 250 time points
starting at the time of release of the spacecraft from the
Space Shuttle and ending at the time communications with
TDRSS are lost following the completion of the engine burn
phase. Perhaps 2 to 3 hours total time is covered by the
analysis for each such trajectory.

Analyses for orbital missions are essentially the
same but may involve much longer time periods as well as
special factors such as earth occultation and interference
from earth multipath reflections.

asssirn!l!ssts on vsnr rnEst B a b
Users seeking valid results from CLASS are asked to

furnish input data in a standard format on magnetic tape.
For various reasons, such as the unavailability of
computer programming resources within the user’s
organization, the data tapes provided to CLASS may be
formatted improperly. Once the data are in the required
format, there are still a number of specific rules which
the data must satisfy. Some of these rules are mission-

95

unique, and the rest are generic. However, in all cases
the rules are derived from the logic of space
communications rather than from the internal requirements
of CLASS programs. - _ -.

csssea9anade _og Bad rnnsli !kt2

Until recently there did not exist a practical means
to determine whether the user-supplied input data
fulfilled the basic requirements (indicated above) prior
to the initiation of actual analysis and simulation runs
in CLASS. Consequently, if input data errors occurred a
considerable amount of CLASS computer time and personnel
tire might be wasted on runs which could only produce
invalid results if they completed at all. Recently, for
example, a data record was inadvertently repeated in the
incoming data cauaing two records to have the same value
for the ground elapsed time. This error, if encountered
during automatic overnight processing on the CLASS
computer, could have resulted in the loss of more than
twelve hours of computer tine and caused the same amount
of delay in completing the runs.

CLASS is now being given the capability to preprocess
the user-supplied input data. This is the function of the
Trajectory Preprocessing System (TRAPS), an expert system
designed to protect CLASS from bad input by (1)
recognizing bad data (usually) before the start of
processing by the analysis and simulation programs, and
(2) reporting the data errors to the CLASS analysts.

TRAPS is designed to check the input data elements
listed in Table 1. Each data record is identified by its
unique ground elapsed time (GET) tag.

Figure 1 displays the first few records of a typical
data file processed by TRAPS. The data in this file were
extracted from a user-supplied input data tape for the I

Centaur Ulysses mission. Each record consists of ten data
elements as listed in Table 1.

The initial requirements ("human rules") on which the
TRAPS expert system prototype was based are given in Table
2. Each of the six "human rules" was translated into from
one to eight OPS5 rules for processing the data records,
plus from one to five additional OPS5 rules for generating
the TRAPS output. With the rules for initialization and

96

I

I

:
I I

1

I
I

I

I

I
I

I

I
I

I

I

I

I

I

I

I

t

I

I

I
I
I
I
I
1

Mission ground el I

I

s link :
I

I

I

I
I
I
I
I

Link ID for link 3 (if active)

Code for the TDRS supporting link 3 (if active)

Code indicating a ueer antenna switch event for link :
3 (if active)

4 ilr active .

I

I
t

Flag indicating user spacecraft communications link :

Link ID for link 4 (if active)

Code for the TDRS supporting link 4 (if active)

User spacecraft configuration code (indicating

I

I

I

:
t

I I

I 1

various events such as beginning or end of a slow f
spin period) I

I

I
I Burn flag indicating engine firing

97

for reading the input data, the total number of OPS5 rules
in the TRAPS prototype (third version) is 49.

For convenie e in debugg g and maintenance, all the
OPS6 rules der ed from a man" rule were
collected into one logical unit. h such logical unit
of OPS6 rules is saved in a separa

As an example of the result of transforming human
rules into OPS5 rules, Figure 2 shows a listing of the
OPS5 rules corresponding to human rule 62 in Table 2. The
first OPS6 rule in Figure 2 is the direct expression of
human rule #2 and fires only while records are being
processed ("phase-process-a-record"). The second and
third OPS5 rules in Figure 2 control the printing of
messages following detection of a violation of the human
rule, and fire only during "phase-printout" after all the
data records have been processed.

At the present time, the expert system produces
messages indicating any errors found. TRAPS does not
(yet) have the capability of correcting or modifying the
input data in any way.

TABLE 2.
"Human rules" on which TRAPS is based ...

I

I

I

I
I

I

I

I
I

I

I

1

I

*
I

I

I

I

I

I

I

I

I

I

I
I

I I

I
I

I

I

I
I

During a slow spin period a user antenna
switch must occur at least once in every 12
minute interval, but not more than once in
any 6 minute interval.

During any trajectory there must occur at least :
one switch of the supporting TDRS, but there must I
not be more than 5 such switches. I

I

I

I
I

1

There must exist a burn flag between 30 and 60
minutes ground elapsed time.

For any user communication link which is active, :
the link ID must be either LOW RATE or HIaH RATE. :

Every valid user vehicle configuration code must :
appear at least once in each trajectory, and every:
configuration code in the input data must be on :
the list of valid codes for that particular
mission.

The GETS must appear in strictly ascending order I
in the input data for any trajectory.

I

I

4

I
I

I I

98

................................
: ; Rules to check for the prop
: ; of TDRS support. I

: (p link-support-3-sw 8 I

I
I

I

I (phase-process-a- I I

I { (current-support "c
I ^switch-count <k>) <c> 3 I
I (record "link-support-3 { <a> <> <cs> 3 I

I (modify <c> *current-support-code <s> :

I

I

I

I

"link-3 <> 0) I

1 --> I

t ^switch-count (compute <k> + 1))) I

I
(p error-link-support-3-too-low-printing I I

I ; mustn't fire til end ' 1

(phase-printout) ,I

! (current-support ^switch-count < 1) 1

t --> I

I (write (crlf) (crlf) I

I :File contains no TDRS link-3 support switch.;)) I

: (p error-link-support-3-too-high-printing I
I : must not fire til end I

I (phase-printout) I

I (current-support "switch-count > 5) I

I (write (crlf) (crlf) I

I :Pile contains more than five TDRS I

1 !link-3 support switches.:)) I

I

:

I I

I I

I I

: --> 1 I

1 I
I ...

Figure 2. OPS5 Rules Corresponding to "Human Rule" Y 2 .

The TRAPS prototype ha8 been tested sufficiently to
establish that its operation is consistent with its
design. It is capable of finding real errors in
trajectory data input to CLASS. The TRAPS prototype will
be used as a model for the development of expert systena
for other CLASS applications.

------- Efficieqgy

The first version of TRAPS (based on the first five
rules in Tabla 1) read in all records from the input file
before the data-checking rules in the knowledge base were
allowed to begin firing. This version was very
inefficient because as the number of data records
increased, the size of OPS5 working memory rapidly
increased and the processing speed rapidly decreased.

94

working mem
records to

ing a module of S5 rules

of the ru
cases. These enhancements caused the third version to run
somewhat rrrlower than the second version.

Table 3 summarizes the processing efficiency of the
three versions on the IBM PC, based on processing a data
file containing 163 data records using OPS5+ Version
2.0003. The values for processing speed are not highly
significant since they are data dependent and sensitive to
the structuring of the condition elements within the rules
[Brownston, 19851.

An important feature of OPS6 code is that literals
ble names in other languages) can
ngth. This feature of OPS5 was

utilized to fully satisfy the requirement that the code
for TRAPS be easily maintainable by being easily read.

ns of TRAPS can be developed
g one or more additional code
an rules. The ability of OPS5
lar approach further ensures

100

c,o!!!n!msos lrith 'ORTRAN
To facilitate the goal of comparing OPS5 and FORTRAN,

a FORTRAN program was writte the functions of
the first five rules of Table 3 shows a listing
of the subroutine from this FO gram corresponding
to the second human rule (Table 2). A comparison of this
FORTRAN subroutine with the equivalent OPS5 code in Figure
2 shows that OPS5 is more readable than FORTRAN, as has
been noted by others.

In comparing Figures 2 and 3, it would seem that OPS5
is more terse than FORTRAN. However, this is often not
the case since a number of functions, especially
input/output functions and general numerical computations,
are cumbersome in OPS5 [Brownston, 19853. The FORTRAN
code developed for the TRAPS application was about 30%
shorter' than the OPS5 code because lengthy literals were
deliberately used in the OPS5 program to enhance
readability .

Based on the experience of developing three different
versions of this prototype expert system as well as a more,
or less equivalent FORTRAN program, it is the author's
opinion that OPS5 offers a considerably higher degree of
maintainability than does FORTRAN.

However, it should be stated that devexoping OPS5
programs i s not without pitfalls. Subtle interactions can
occur between the rules in a production system program
during interpretation by the inference engine. These
interactions can be difficult to predict and tricky to
debug [Brownston, 19851. Programming in OPS5 requires
carefulness and skill, perhaps beyond that required for
procedural languages such as FORTRAN.

As far as the prototyping environment is concerned,
OPS5+ on the IBM PC eerved fairly well. In the "develop"
mode, OPS5+ provides a window and mouse menu interface.
However, the windows on the IBM PC are not the same as
windows on a LISP workstation such as the Symbolics
machine. The OPS5+ windows are simple divisions of the
screen into fixed areas or panels which display either
menus or results of program execution. In the mouse menu
panel, OPS5+ achieves the functional equivalent of the
LISP machine windows by employing an overlay technique.

Any expert system development tool is enhanced by a
good editor. OPS5+ hail a built-in editor which was not
used during TRAPS development -- instead, WordStar was
used under an OPS5+ feature which permits the user to
pause the execution of OPS5+, edit, and then re-enter

101

I

I

I

I

t

1 10
I

I

I

I I

I

I
I

I

I

I
I

I I

I 20
I

I

I
I

t
1
I

I

I

I

I

I

I
I
1

I

I 100

I 200

: 300

I

I

I
I
I

I I

I I

I I

I

I $INCLUDE
I
I
1
I

MFLAG=O
DO 10 L=l, 4 I

IF(SUPPORT(MSUP,I) .EQ. MCODE(L))MFLAG=l :
CONTINUE I

IF (MFLAG .EQ. O)WRITE(1,300) I I

+ SUPPORT(MSUP,I),I I

SUPL=SUPPORT (MSUP,I) I

I

ENDIF I

I
1 ELSE

IF (LINK(MSUP,I) .EQ. 1)THEN I I

MFLAG=O
DO 20 L=l, 4
IF(SUPPORT(MSUP,I) .EQ. MCODE(L))MFLAG=l:

CONTINUE I

IF (MFLAG .EQ. O)WRITE(1,300) I

SUPPORT(MSUP,I),I I

NSWT=NSWT+l I

SUPL=SUPPORT(MSUP, I) I

ENDIF I

ENDIF I

IF (NSWT .EQ. 0)WRITE (1,100) I

IF (NSWT .GT. 5)WRITE (1,200) I

I I

I I

IF (SUPPORT(MSUP,I) .NE. SUPL)THEN I

IF (I .4E. NPTS) THEN I
I

ENDIF I
1

I

4 I

I

I I

I

I

ENDIF

+
N 5 SWITCHES AFTER *

+
+

ID: * ,A25, I 1

I I

OPS5+ at the pause point. Each pause puts the user at
the PC's operating system level, where the user may
explicitly execute the editor/word processor of his or her
choice. All of this is functional, if tedious and time-
consuming, especially when using floppy drives.

The drawbacks of OPS5+ as a development tool probably
have more to do with the hardware than with the software.
First, since the IBM PC disp.lay is not bit-mapped it does
not facilitate true windowing, and is thereby limited in
it5 ability to display enough information. Second, the
IBM PC does not have enough raw speed, especially when
using floppy disk drives (this problem is essentially
solved by using a hard disk on an IBM PC/AT).

From the TRAPS development effort, OPS5+ received a
positive evaluation overall. It was found to be an
effective and essentialiy bug-free tool with a favorable
price-performance ratio.

ORPL, the Oak Ridge National Laboratory
implementation of the OPS5 language in FORTE [Dress,
19861, is currently being ported onto the CLASS mainframe.
This porting effort started in March, 1986 after a brief
period warn spent becoming familiar with the SS-FORTH
package. (a direct-executing version of FORTE [Pawley,
19841) recently acquired for the C L A S S mainframe.

When OBPL becomes available for use on the C L A S S
mainframe, it will be validated by running the TRAPS code
as well as the code for other expert systems written in
OPS5 which may be available from other A I groups within
NASA (or elsewhere). Benchmarking of ORPL against other
implementations of OPS5 is also planned.

Beyond the completion of the porting of ORPL, future
efforts are expected to divide into two areas: (1) other
CLASS expert system applications, and (2) enhancements to
ORPL.

Some of the applications within CLASS which are
candidates for solution via expert systems are:

(a) Communications link fault diagnosis
(b) User spacecraft communications system design
(6) CLASS "super executive" control program

Efforts to enhance ORPL may include an object-
oriented knowledge representation paradigm and user-
friendly features such as color graphics, a mouse
interface, and window-based editing. Another enhancement
to ORPL that will be important for some applications is

103

the capability to incorporate or directly utilize routines
written in FORTRAN.

CONNc_&VSION
Preprocessing incoming data to verify its

acceptability prior to its use in critical or resource-
intensive processing is essential in many computer
applications. This is the case in the CLASS environment
and has led to the development of the TRAPS prototype
expert system. This project has shown that an input data
preprocessor developed as a rule-based system in the OPSS
language is a viable alternative to programs in
traditional languages. It was shown that OPS5+ on an IBM
PC ran fast enough to satisfy CLASS requirements for
processing efficiency. This suggests that the application
will also run fast enough when ported to the CLASS
mainframe. In addition, this project has shown that OPS6
offers improved program maintainability in comparison with
FORTRAN. Based on these results, development of
additional expert systems for CLASS using the Oak Ridge
Production Language (ORPL) is planned.

---------------- ACKNOWLEDGEMENTS

Robert Brown and Robert Savely of the Johnson Space
Center (JSC) are thanked for making possible the
technology transfer project between NASA/GISFC and NASA/JSC
that initiated the development of TRAPS. Liu Wang of JSC
is especially thanked for his participation in the joint
coding of the first two versions of TRAPS in OPS5. Dr.
Ronald Littlefield of Allied Bendix Aerospace Corporatipn
is thanked for his helpful suggestions in the writing of
this paper.

1.

2.

3.

Godfrey, R. D., "The Communications Link Analysis
and Simulation System (CLASS)," NASA Conference
Publication 2342, Part 2 , Session 8, Space Shuttle
Technical Conference, Johnson Space Center,
Eouston, Texas, June 28-30, 1983.

--- "Space Communications Performance Prediction
Utiiizing the Communications Link Analysis and
Simulation System (CLASS)," CLASS 101, Goddard
Space Flight Center, Greenbelt, Maryland, July
1984.

Brownston, L., Farrell, R., Rant, E., and Martin,

Introduction &,o Rule-Bgg_e_d Bgqgramming, Addison-
N.9 Ersgrsaaisg Exrr!2rt systeaa ir! OES5, As

104

Wesley Publishing Company, Inc., 1985.

4.

5.

Rochester, New York, 1984.

T N13
M

i ce
0

Seabrook, Mar

Phone: (301 1 731-1 173

ABSTRACT -- The paper describes a technique which
the author developed f o r tes t ing expert systems.
The technique, which he c a l l s multiperspective
test ing, can be applied during both the knowledge
engineering phase and the acceptance tes t ing phase
of developing an expert system. The f i r s t step i n
multiperspective tes t ing i s t o define a group of
performance measures ("perspectives") tha t focus
on the behavior of the knowledge base. For each
such measure, the resu l t s of tes t ing are
summarized i n four scores, which the author c a l l s
"expansion, '* "detection, " "discrimination, '' and
"comprehesion. 'I These scores have t h e advantage
of providing more speci f ic information about how
the knowledge base should be updated or corrected.

1 I NTRODUCT I ON

A major constraint i n bui ld ing and del iver ing a r e l i a b l e
expert system i s the need for tes t ing techniques tha t
produce detailed, quant i f ied answers about the qua l i t y and
accuracy of i t s knowledge base. Such answers are not always
easy t o come by. Test resu l t s can be d i f f i c u l t t o
in terpret , and the re la t ionship between t e s t resu l t s and the
knowledge base i tee1 f may be obscure.

The purpose of t h i s paper i s t o describe a technique ca l led
multiperspective test ing, which the author developed while
t r y i n g t o organize tes t ing of a prototype expert system. I n
multiperspective test ing, the f i r s t step i s t o define a
group of performance me re5 ("perspectives") tha t focus on
the behavior of the kn dge base t o be tested. *For each
performance measure, resu l t s are summarized i n four
scores 1 led "expansion, 'I **detection, I' "discrimination, "

ehesion. I' These scores, which were developed by
author, have the antage of providing more information

ut how the know1 base should be updated or corrected
i n response t o t e s t results.

2. MAJOR CONCEPTS

The major steps in performing a multiperspective test are:

0 Definition of customized performance measures.

0 Actual performance of tests.

0 Calculation of the "perspective" scores.

0 Comparison of scores to an "acceptance thresholds"
table that de+ines acceptable performance levels.

These steps are described in the paragraphs below.

2.1 DEFINING THE PERFORMANCE MEASURES

To use multiperspective testing, an expert system must first
be assigned a set of unique, customized performance measures
called perspectives. The term "perspective" here refers to
evaluation of 'an expert system in much the same fashion that
a panel of specialists (vs. a single expert) might evaluate
it, with each member the panel judging the the behavior of
the system from his own "perspective," and ignoring results
that are outside of his area of specialization,

Multiperspective testing uses a similar divide-and-conquer
approach, although without using an actual panel of
specialists. Multiple results are instead derived from one
expert who "shares" his time among several previously-
defined specialty areas. The specialty areas, or
perspectives, may vary widely in complexity and difficulty,
ranging from "comprehensive" perspectives that look at large
segments of the total test results, to "specialized"
perspectives that look only at a narrowly defined data sets.

Individual perspectives need not be complex or difficult to
define. , For example, assume that the purpose of an expert
system is to provide advice on how to handle power or
cooling losses in a multi-building complex. In this case,
the structure of the problem domain (the multi-building
complex) could be used to define several comprehensive
perspectives. One group of perspectives could be defined to
look at test results for each building of the complex;
another pair of perspectives could look at the two major
subsystems (power and cooling) of the complex. More
specialized perspectives might look at responses concerning
a specific type of equipment; perspectives of this type
could be useful if there were unique, critical requirements
for such equipment.

107

Another way t o d e f i n e t e s t i n g p e r s l o o k a t
mediate s t e p s i n how
t. For example, i f
t o locate equipment f a

network, a p e r s p e c t i v e c o u l d be
whether t h e e x p e r t sys tem can de e n c e of a n
equipment f a i l u r e , regardless of whether t h e e x p e r t sys tem
can a c t u a l l y d e t e r m i n e t h e l o c a t i o n of t h e f a i l u r e . Using
known i n t e r m e d i a t e s t e p s t o d e f i n e p e r s p e c t i v e s can be
p a r t i c u l a r l y u s e f u l for de te rmin ing whether "good" f i n a l
r e s u l t s are based on d u b i o u s i n t e r m e d i a t e conc lus ions .

C r e a t i n g a comple te , e f f e c t i v e set of t e s t i n g p e r s p e c t i v e s
is n o t a t r i v i a l t a s k ; as a minimum, it requires a good
unde r s t and ing of b o t h t h e problem domain and t h e f u n c t i o n a l
r e q u i r e m e n t s of t h e e x p e r t system. However, once d e f i n e d ,
such performance measures can be h e l p f u l b o t h i n o r g a n i z i n g
t h e t e s t i n g a c t i v i t y , and i n s t e e r i n g t h e o v e r a l l d i r e c t i o n
of t h e knowledge e n g i n e e r i n g effort .

2.2 PERFORMING THE TEST

M u l t i p e r s p e c t i v e t e s t i n g assumes t h a t a r e a s o n a b l y l a r g e set
of real is t ic test data is independen t ly a v a i l a b l e . H o w t o
create such a data set is itself a complex t a s k , one t h a t is
beyond t h e scope of t h i s paper.

While runn ing test data, t h e test conduc to r w i l l o f t e n need
t o n o t e r e s u l t s i n t w o or more of t h e performance measure
c a t e g o r i e s . Although it may be p o s s i b l e t o extract data
"after t h e fact" from a s i n g l e d e t a i l e d set of test n o t e s ,
it is g e n e r a l l y better for t h e test conduc to r t o have forms
p repa red for n o t i n g m u l t i p l e r e s u l t s d u r i n g t e s t i n g .

T h e test conductor also n e e d s t o be aware of t h e special
s c o r i n g methods used i n m u l t i p e r s p e c t i v e t e s t i n g , which are
descr ibed i n t h e n e x t s e c t i o n .

2.3 SCORING

F i g u r e 1 shows a g r a p h i c a l r e p r e s e n t a t i o n of a 3 - p e r s p e c t i v e
test, i n which ch of t h e d imens ions c o r r e s p o n d s t o a
d i s t i n c t performa e measure. T h e volume l abe led w i t h a n
a l p h a r e p r e s e n t s t h e set of a l l c o n c l u s i o n s reached by an
accep ted a u t h o r i t y (t h e e x p e r t) for t h e test data; t h e
o v e r l a p p i n g s p a c e , which is labeled w i t h a beta, r e p r e s e n t s

of c o n c l u s i o n s reached by t h e e x p e r t sys tem.
P e r p e n d i c u l a r t o each of t h e p r o j e c t i o n a x i s is a s u r f a c e
o n t o which t h e a l p h a and beta sets are " p r o j e c t e d , " or
viewed th rough one of t h e p e r s p e c t i v e measures. T h e r e s u l t s
are t w o (g e n e r a l l y o v e r l a p p i n g) s u b s e t s of t h e o r i g i n a l test
r e s u l t s , shown as t h e Venn diagrams labeled A and B.

108

n
.I
>
Y
U

0
L
L
.I

4

m

n

I
I
I
I
I
I

. I
I
I
I
I
I
I

I I

I I

I 1
I

\
\ P r o j e c t i o n 1
\
\
\
\
\

FIGURE 1. Graphical Representation of a 3-Perspective Test

109

For each project ion, the fo l lowing Venn diagram regions are
def i ned t

A -- The set of r e s u l t s projected from the alpha
(accepted author i ty) conclusion set. (Note tha t
i n some cases, ~ e s u l t s which the author i ty
accepts as v a l i d may be uncovered by the expert
system during test ing. For consistency, such
resu l t s should be added t o the alpha and 4 sets
before the perspective scores are calculated.)

A ' -- The set of a l l members of A which do not overlap
w i t h E (A - E , where "-" i s set subtraction)

E -- The set of r e s u l t s projected from the beta
(expert system) conclusion set.

E' -- The set of a l l members of E which do not overlap
wi th A (E - 4 , where "-'* i s set subtract i on

C -- The in tersect ion of A and E (tha t is, the set of
"correct answers" produced by the expert system).

The four "scoring values'' f o r a perspective can now be
defined i n terms of the Venn diagram regions:

a. EXPANSION -- The expansion score E i s an optional
r a t i n g tha t i s used t o e x p l i c i t l y r a t e the expert
system for f ind ing correct answers of which the
"accepted author i ty" was unaware. The expansion
score gives the percentage of increase i n the
number of the accepted correct answers (fo r t ha t
perspective) tha t i s d i r e c t l y due t o the detection
of such answers by the expert system during
tes t ing . (Note tha t discr iminat ion and detection
ra t ings are always calculated using the expanded
set of correct answers, t o insure tha t detection
and discrimination ra t ings remain less than 100%)

The expansion score i 5 defined below. (Note tha t
paired v e r t i c a l bars simply ind icate tha t the
number of items i n the set should be counted and
the r e s u l t used a5 the value of the parameter.
Also, note tha t ho ld re fe rs to the A set t ha t was
used before the new resu l t s were added t o it.)

110

b. DETECTION -- The detection score I) is a percentage
measure of the ability of an expert system to find
correct answers, regardless of how many wrong
answers are also produced. The detection score is
defined as follows:

I) = 100 * :c:
: A :

It is not necessarily difficult for an expert
system to achieve a detection rating near l0saX,
since this score does not take the number of wrong
answers into account; in many cases, a system
could do fairly well by simply "overreacting" to
its inputs and producing large quantities of
invalid conclusions, with a relatively small
proportion of valid conclusions mixed in. It is
the combination of a high score in detection with
a high score in discrimination (see below) that is
difficult to achieve, and which makes the
detection score more indicative of a good
knowledge base. A low detection score generally
indicates a need to expand or refine the knowledge
bare components which deal with that particular
performance measure. It may also indicate that
the approach used in the.knowledge ba5e is too
conservative, and should be modified in favor of
taking more risks.

c. DISCRIMINATION'-- The discrimination score S is a
percentage-form measure of the ability of an
expert system to avoid erraneous conclusions,
regardless of how many correct answers it finds.
The discrimination score is defined as fallows:

s = 100 * :c:
:B:

(Note that if :B: is zero, the detection score is
declared to be undefined for the current test
set.) One way to obtain a high discrimination
score would be to take an conservative approach in
which only very safe conclusions are asserted.
Unfortunately, such an approach would also result
in a low detection score, since few of the known
conclusions would be found. A low discrimination
score would generally indicate poor "modeling" of
the subject area of the performance measure; the
knowledge base could be making overly simplistic
assumptions about the nature of the subject area,
or it could simply contain erroneous entries. A
low discrimination score could therefore indicate
a need to review or expand the knowledge base for
that performance measure.

111

d. COMPREHENSION -- The compr on score is a
derived r e s u l t ; it is s i m e produc t of t h e
detecti on and d i scri m a t i on s, divided by 10&L

comprehesion r a t i n g of 100% would i n d i c a t e t h a t
t h e c o n c l u s i o n set reached by t h e e x p e r t sys tem is
e x a c t l y t h e same as t h e c o n c l u s i o n 5et reached by
t h e a c c e p t e d a u t h o r i t y . The t e r m "comprehension"
is used t o descr ibe t h i s score because , f o r t h e
s u b j e c t area of t h e per formance measure, it is
p e r h a p s t h e s i n g l e b e s t i n d i c a t o r of t h e o v e r a l l
l e v e l of s o p h i s t i f i c a t i o n of t h e knowledge base.

t o keep t h e r e s u l t i n p e r c e n t a g e f o r m . A

The comprehension score is d e f i n e d as follows:

I = D * s = 100 * :c:**2
100 : R : * :E:

2.4 THE ACCEPTANCE THRESHOLDS TABLE

Although performance measures and s c o r i n g v a l u e s can p r o v i d e
u s e f u l data a b o u t t h e behav io r of a knowledge base, t h e y do
n o t by themse lves d e f i n e what is a n "acceptable" l e v e l of
knowledge base performance. T o d e t e r m i n e a c c e p t a b i l i t y , a
tab1 e of "accep tance thresh01 de" i s needed .
An a c c e p t a n c e t h r e s h o l d s t ab le is s imply a list (by
performance measure) of t h e minimum acceptable p e r c e n t a g e s
for t h e d e t e c t i o n , d i s c r i m i n a t i o n , and (o p t i o n a l l y)
comprehension scores. N o t e t h a t expans ion scores r e p r e s e n t
t r a n s i e n t data o b t a i n e d d u r i n g c o n s t r u c t i o n of t h e knowledge
base, and are n o t a p p r o p r i a t e for a c c e p t a n c e t e s t i n g .
Comprehension t h r e s h o l d v a l u e s are o p t i o n a l because
comprehension scores are d e r i v e d f r o m d e t e c t i o n and
d i s c r i m i n a t i o n scores, and t h u s g i v e r edundan t i n fo rma t ion .

T h e a b i l i t y t o have independent a c c e p t a n c e t h r e s h o l d s for
d e t e c t i o n and d i s c r i m i n a t i o n is i m p o r t a n t , s i n c e t h e
r e l a t i v e s i g n i f i c a n c e o+ t h e t w o may v a r y w i t h t h e
o b j e c t i v e s of t h e e x p e r t system. For example, i f t h e e x p e r t
sys tem w e r e o n l y required t o f i n d a s i n g l e answer t o a
problem t h a t is known t o have many answers , it might b e
a c c e p t a b l e t o set t h e d e t e c t i o n t h r e s h o l d a t a l o w va lue .
On t h e o t h e r hand, if r e l i a b i l i t y is ex t r eme ly i m p o r t a n t ,
t h e d i s c r i m i n a t i o n th re sho ld shou ld be set a t 100% t o
i n d i c a t e t h a t wrong answers are never acceptable.

112

3. RESULTS OF USING MULTIPERSPEGTIVE ANALYSIS

Multiperspective testing was developed at Bendix primarily
as an internal tool for testing and evaluating expert
systems. It has been used fairly extensively in the testing
of at least one such expert system, although the test
results for that system were based only on a moderate
quantity of test data. In one case, an evaluation of one
performance measurement resulted in a low discrimination
score, which suggested that the knowledge base needed
stronger modeling of "normal I* problem domain behavior. In
this instance, the direct result was an effort to strengthen
the knowledge base by adding discrimination-type rules.

Even with the small set of tests performed so far, results
have been encouraging; at very least, the technique
provides a "handle" for getting started in a difficult test
domain. Additional trials of the technique, including its
use in acceptance testing, are planned.

4 . CONCLUSIONS
Multiperspective testing is a promising technique, but it
needs to be applied ta a broader range of systems before
firm judgements can be made. Perhaps its strongest features
are its ability to provide better correlation of test
results with the knowledge engineering effort, and its
ability to permit varying levels of thoroughness and
reliability to be specified for different functional
characteristics of a single knowledge base.

Another simple but important advantage of multiperspective
testing is that it can be used to monitor and demonstrate
progress in specific, critical areas of the knowledge
engineering effort. This ability could probably be used to
show progress in much the same fashion that saftware builds
can be used to demonstrate and test key features of a large
software system befare the system as a whole i 5 complete.

Finally, many of the specification techniques described here
for testing could also be used "up front" to define generic
requirments for how to build a knowledge base. Unlike a
traditional requirments specification, a Multiperspective
Requirements Specification would have the advantage of
providing specific guidance about overall features and
levels of reliability needed for an expert system, without
attempting to pin the system down to deterministic lists of
detailed functional requirments.

113

114

PAPERS OF GENERAL INTEREST

115

Simple Methods of Exploiting
the Underlying Structure

of Rule-Based Systems

James Hendbr
Department of Computer Science

University of Maryland
College Park, Maryland

May 4,1986

l lb

1. Introduction
as aimed at exploit-

ing the underlying structures of analysis. Such tech-
niques as Petri-nets and GAGS entational structures
that will allow complete analysis. Much has been made of proving
between the rule bases and the mechanisms, and in examining the the
of this analysis. In this paper we describe some early work in a new
has much simpler (and thus, one hopes, more easily achieved) aims and less formal-
ity.

The technique being examined is a very simple OPS5 programs are
analyzed in a purely syntactic way and a FSA descriptio nerated. In this paper
we describe the technique and some user interface tools which exploit this structure.

Much recent work in the field of

2. Anssumptions

this paper.
Our starting assumptions are important in understanding the work described in

W e believe that the reduction from the rule-base to the network should be
purely syntactic. This restriction limits the power we can expect from this
system, but allows us to avoid the mistake of making the reduction a more
powerful, but less well understood technique.
The reduction should not need to account for variable bindings. If variable
bindings between rules is taken into account the mechanism performing the
reduction ends up needing to unify rules clauses to each other. We are pur-
posely trying to design a system which can be simple and efficient by avoiding
such decisions.
The network produced b y the reduction can include “errors” which more com-
plete analysis could catch. By this we mean that as we reduce a rule-base to
a network we are essentially stating what rules are reachable from which oth-
ers. Often, however, rules which our mechanism says are reachable won’t be,
since for example, the whole set of activating info for some rule may never
turn out to be in working memory at the same time. Again, our system is
kept simple and syntactic. It essentially produces a “heuristic approxima-
tion” of the set of possible futures. We view it as an aid for human analysis
of the system, not an analysis device in its own right.

3. The reduction
The methodology we use for reducing the rules to the network is extremely sim-

ple (and somewhat simplistic as discussed elsewhere in this paper). We simply take
each rule and index i t according to the working memory elements its conditions
either match or require to be excluded (via negation), and on the working memory
items it makes and/or removes (modify assumes a remove and a make). Everything
else (write, read, l i p , etc.) is ignored. All working memory element variables are
assumed to match any variable or constant, wherever they appear.

For example, consider the following OPS5 rule from the famous “monkeys and

117

(P mbl
(goal Istatus active ttype holds tobject <w>)
(object tname <w> ta t <p> ton ceiling) -- >
(make goal tstatus active ttqpe move tobject ladder tto <p>))

Our system stores the information that mbl:

1) Depends-on:
(GOAL ACTIVE HOLDS ? ?)
(OBJECT ? ? CEILING)

(GOAL ACTIVE MOVE LADDER ?)
2) Creates: e

(Thus, the system has rendered all variables into ‘?’ and stored the conditions and
actions as separate properties of ‘mbl.’)

If we had a more complex rule such as:

(p mb99
(goal tstatus active ttype holds tobject nil)
(object tname <o> tat <p>)
(monkey tholds { <x> < > nil})
- (open fdoor <d>)
-- >
(make open fdoor <d>)
(modify 3 tat <p>))

-’

We would add the following to mb99:

1) Depends-on:
(GOAL ACTIVE HOLDS NIL ?)
(OBJECT ? ? ? ?)
(MONKEY ? ? ?)

(OPEN 7)
(MONKEY ? ? ?)

(OPEN ?)

(OPEN ?)

2) Creates:

<from the modify>
3) Depends-on-not:

4) Removes:
<also from the modify>

We can turn this into a usable form by first creating a state space of all the
memory elements which are found in the ‘creates’ of a rule-set (merging those which
are equal), and then matching the ‘dependson’ information against this space. Thus
if we had the state, S1, with the pattern “(object ladder ? heavy ?),” mb99 above
would depend on it since SI matches “(object ? ? ? ?)” which is listed in mb99’s
‘dependson’ set. ‘Depends-on-not’ and ‘removes’ function analogously.

118

For the rest of this short paper we will use the example rules:

(P 61
(start 1)

->
(make monkey tat 5-7 ton couch)
(make object tname couch tat 5-7 fweight heavy)
(make object tname bananas ton ceiling tat 2-2)
(make object tname ladder ton floor tat 9-5 tweight light)
(make goal tstatus active ttype holds fobject bananas))

(goal fstatus active ttype holds fobject <w>)
(object tname <w> tat <p> ton ceiling)

(make goal fstatus active ttype move tobject ladder tto <p>))

(goal tstatus active ttype holds tobject <w>)
(object tname <w> fat <p> ton ceiling)
(object tname ladder tat <p>)

(make goal fstatus active ttype on fobject ladder))

(P mbl

->

(P mb2

-- >

(P mb3
(goal fstatus active ttype holds tobject <w>)
(object tname <w> tat <p> ton ceiling)
(object tname ladder tat <p>)
(monkey ton ladder)

(make goal fstatus active ttype holds fobject nil))

(goal fstatus active ttype holds fobject <q>)
(object tname couch fweight heavy at <1>)
(monkey tat <p> ton couch)

(make goal fstatus active ttype holds tobject nil tto <1>)
(make goal fstatus active ttype on fobject ladder))

-- >

(P mb4

-- >

which are transformed into:

tl:
creates:

dependson:
(54 s3 92 sl SO)

nil <since no other rule can create the pattern (start 1)>

mbl:
createsr

dependson:
(s6)

(s4 s7 sl s2)

mb2:
creates:

dependson:
W)
(94 s7 SI s2 s3)

119

mb3:
creates:

depends-on:
(97)

(s4 s7 sl s2 53)

mb4:
creates:
(s6 s7)

depends-on:
(s4 s7 sl so)

where the states are:

so:
sl:

s2:

53:

s4:

ss:

s0:

s7:

(monkey 15-71 couch t)

(object couch 15-71 heavy 2)

(object bananas 12-21 t ceWng) .

(object ladder 19-51 floor light)

(goal active holds bananas 2)

(goal active move ladder 2)

(goal active on ladder t) *.
(goal actlve holds nil f)

The information yielded in this manner enables us to create a finite state auto-
mata network, with the rules as nodes and the states as transitions. To do this we
connect each rule which creates a state to all rules which depend on that state. For
the example above the FSA looks like:

We would also l i i the ‘removes’ and ‘depends-on-not’ states, and also add an inward link to
each node which has a depends-on-not from each node which doesn’t include that node’s
input states in its ‘creates’ field (not shown in this example).

4. Using the information
The FSA created by the above processes can clearly not be used for a complete

analysis of the expert system. Variable bindings have been ignored-we cannot
really count on our results. What is it good for?

120

We are presently building an expert system rule interface which relies on this
network. Notice that with the information of section 3 we are able to answer a large
set of questions-although somewhat imperfectly. From the FSA we can answer
questions like “what rules might fire as a result of applying Tl?” or “what are all the
rules that might come immediately before MB4?” Further, by doing some simple
boolean operations on the network we can also answer more complex questions such
as “What rule might be fired after applying T1, and T3 and assuming T4 is unable
to match?”

Another aspect of this system is the state information stored in the FSA.
Because of this we can answer questions about specific working memory elements
that the user is interested in examining. For example, we could ask “What rule
might fire if I add (OBJECT t NAME COUCH) and (MONKEY TAT 5-7) to the
working memory?” or “What rules might be effected if (GOAL ISTATUS ACTIVE
tTYPE HOLDS) was removed?”

We believe that this sort of information, even flawed as it is in our system, pro-
vides a powerful tool for debugging a rule set. The system will let the user train
through a set of rules looking at potential antecedent and consequent rules. Once
interesting property of this method is that our system may make errors of commis-
sion, but won’t make errors of omission-all the correct rules will be reported in the
answer to a question, although some of the rules reported may not actually be appli-
cable.

5. Conclusions
The simple technique described in this paper is a powerful tool in the creation

of a system for debugging expert system rule bases. Unlike most such systems ours
is based on a simple technique, easily implemented and efficiently run. Also unlike
these systems ours makes mistakes which the user is expected to catch. We are wil-
ling to put up with this type of error since the question of how to do a full analysis
is presently an unsolved problem.

121

DIOGENES

EXPERT SYSTEM
FOR EXTRACTION OF

DATA SYSTEM REQUIREMENTS

R o b e r t W. Hobbs
T . P a t r i c k G o r m a n

C o m p u t e r T e c h n o l o g y A s s o c i a t e s , Inc.
7501 F o r b e s B l v d . , S u i t e 201

L a n h a m , MD 20706

122

W e have deve loped a p r o t o t y p e e x p e r t sys t em w n i c h n a s
e s t a b l i s h e d t h e f e a s i b i l i t y of a u t o m a t i n g a s c e n a r i o - d r i v e n
meth .odology f o r d e r i v i n g t o p - l e v e l s p e c i f i c a t i o n s a n d
pre l iminary des igns f o r user data systems. T h i s scenario-dr iven
methodology u s e s a n i n i t i a l d e s i g n , an i n i t i a l o p e r a t i o n s
c o n c e p t , and user s c e n a r i o s a s t h e s t a r t i n g p o i n t f o r s y s t e m
d e f i n i t i o n . T h e t o p - l e v e l i n i t i a l d e s i g n i s a t u n c t i o n a l
d e s c r i p t i o n of t h e s y s t e m i n t h e form of a n a n n o t a t e d d a t a f l o w
diagram. The i n i t i a l o p e r a t i o n s concep t expres ses informat ion
a b o u t s y s t e m o b j e c t i v e s , and d e f i n e s t h e s y s t e m u s e r s , s y s t e m
i n t e r f a c e s , and o p e r a t i o n a l pe r fo rmance c o n s t r a i n t s , The user
s c e n a r i o s a r e d e t a i l e d t i m e - l i n e d d e s c r i p t i o n s of u s e r
a c t i v i t i e s , developed by prospec t ive end users. These scenar ios ,
a l o n g w i t h t h e i n i t i a l d e s i g n and o p e r a t i o n s c o n c e p t , a re
analyzed and i terated by t h e e x p e r t system t o form a c o n s i s t e n t
set. The r e s u l t i n g User Scenario-Operation Concept Set p l ays a
key r o l e i n t h e development of r e q u i r e m e n t s and system tests.

The e x p e r t system which w e have developed and named DIOGENES
p r o v i d e s a n au tomated means f o r s y s t e m s e n g i n e e r s (who a r e
t y p i c a l l y not t h e end users of data systems) t o communicate w i t h
prospec t ive end u s e r s (who a re t y p i c a l l y not systems engineers) .
A br i e f d e s c r i p t i o n of how t h e fu l l - s ca l e Diogenes s y s t e m w i l l
work is a s f o l l o w s : A s stem engineer who has deve loped a n
i n i t i a l d e s i g n a n d a n ope s a t i o n s c o n c e p t i n t e r a c t s w i t h t h e
e x p e r t sys t em t o describe t h e t o p - l e v e l s y s t e m t u n c t i o n s , da t a
f lows, data rates, 1/0 devices , etc. From t h i s i n t e r a c t i o n , t h e
expe r t system creates a n annota ted data flow diagram i n t h e form
of a d i s p l a y l i s t t o describe t h i s des ign . The e x p e r t s y s t e m
t h e n encodes t h e l i s t i n t o a s e t of rules. A p r o s p e c t i v e end
user can then i n t e r a c t w i t h these rules t o describe h i s s p e c i f i c
use. The system guides t h e user i n e n t e r i n g a s c e n a r i o which can
be ca r r i ed o u t w i t h i n t h e bounds of t h e i n i t i a l d e s i g n b u t a l s o
a l lows t h e user t o t a k e e x c e p t i o n t o i t , - i f (w h i c h i s l i k e l y)

123

t h e u s e r s c e n a r i o c a n n o t be car r ied o u t w i t h i n t h e i n i t i a l
des ign . The s y s t e m s e n g i n e e r is p r o v i d e d w i t h a copy of t h e
s c e n a r i o and a d e s c r i p t i o n of t h e except ions taken. The engineer
can then modify t h e des ign and i n t e r a c t i v e l y e n t e r t h e modified
design i n t o t h e e x p e r t system. T h i s p rocess is repeated u n t i l t h e
design and s c e n a r i o converge,

The t a s k of d e s i g n i n g user da ta s y s t e m s t h u s becomes a
process of coupled i n t e r a c t i o n carried o u t by the system engineer
and t h e prospec t ive end user, w i t h each success ive ly i n t e r a c t i n g
w i t h t h e e x p e r t sys tem, A t o p l e v e l g raphica l i l l u s t r a t i o n of
t h e expert system and its use is shown i n Figure 1,

Our system is based on t h e fol lowing assumptions:

1, A system end user i s t h e best source of informat ion i n
e s t a b 1 is h i n g top-1 ev e l r e q u i r eme n t s f o r user d a t a
systems.

2 . End users t y p i c a l l y can c o n c e p t u a l i z e t i m e - o r d e r e d
sequences of a c t i v i t i e s (scenar ios) t h a t describe t h e i r
p o t e n t i a l u s e of t h e s y s t e m i n a d v a n c e of s y s t e m
design,

3 , A s t r u c t u r e d grammar c a n be deve loped w h i c h a l l o w s a
u s e r a c c u r a t e l y a n d f l e x i b l y t o e x p r e s s t h e s e
s c e n a r i o s .

4 . The s t r u c t u r e d grammar can have s u b j e c t s , v e r b s ,
o b j e c t s , etc., w h i c h a r e d e f i n e d b o t h by a s y s t e m s
engineer , who has developed a concept of opera t ion f o r
t he data system, and by t h e user.

EXPERT SYSTEM
OR EXTRACTION OF

DATA SYSTEM
REQUIREMENTS

L

FINAL
DESIGN

FINAL
SCENARIO

Figure 1. Top-Level Graphic Description ot an Expert System
f o r Extract ion of Data System Requirements

125

Namely,

1.

2.

3 .

4.

5 . The .expert system can a) guide t h e systems engineer and
t h e u s e r i n s e t t i n g up t h e s u b j e c t s , v e r b s , ob jec t s ,
etc.; and b) g u i d e t h e user i n e n t e r i n g a s c e n a r i o i n
such a way t h a t engineer ing p r i n c i p l e s can be evoked by
t h e expert system t o d e r i v e performance and f u n c t i o n a l
requirements f o r t h e data system,

The p r o t o t y p e , which w e have developed , c a n c a r r y o u t a
s m a l l se t of t h e f u n c t i o n s p o s s i b l e f o r a f u l l s ca l e sys t em,

t h i s prototype:

G u i d e s a Sys t ems Eng inee r i n e s t a b l i s h i n g a n I n i t i a l
Design Concept and i n e x p r e s s i n g s y s t e m l e v e l "a
Q L ~ Q X ~ " c o n s t r a i n t s , r e q u i r e m e n t s a n d d e s i g n
parameters .
Guides a prospec t ive data system end user i n e n t e r i n g a
s c e n a r i o which f l e x i b l y describes t h e system from h i s
po in t of view,

Prompts f o r changes t o t h e user s c e n a r i o s o r l i s t s
required changes i n t h e i n i t i a l des ign t o make t h e se t
of d e s c r i p t i o n s (i n i t i a l d e s i g n , user s c e n a r i o ; and
requirements 1 cons i s t en t .

Generates a l i s t of system func t iona l requirements.

T h i s p ro to type has s u c c e s s f u l l y demonstrated t h e f e a s i b i l i t y
of d e v e l o p i n g a f u l l scale e x p e r t sys t em f o r e x t r a c t i o n o t data
system requirements, The expe r t system w e have demonstrated is
unique i n t h a t i t p r o v i d e s e x p e r t a s s i s t a n c e i n two (as opposed
t o t h e t y p i c a l s i n g l e) d o m a i n s of k n o w l e d g e : t h e s y s t e m
engineer ing domain and t h e user domain.

O u r a p p r o a c h i n d e v e l o p i n g a n e x p e r t s y s t e m f o r
a u t o m a t i c a l l y e x t r a c t i n g r e q u i r e m e n t s f rom a user s c e n a r i o i s

126

inf luenced by t h e requirement t h a t t h e proposed e x p e r t system i n
its completed conf igu ra t ion has two users: t h e user who w i l l be
en te r ing a scenario; and t h e systems engineer who w i l l be f i r s t
e n t e r i n g a n o p e r a t i o n s c o n c e p t and i n i t i a l d e s i g n , and l a t e r
u s i n g t h e s y s t e m t o e x t r a c t f u n c t i o n a l and p e r f o r m a n c e
requirements. The knowledge base m u s t t h e r e f o r e be e f f e c t i v e i n
two domains: a c o n t e x t - f r e e user domain w n i c h a l l o w s t h e
s c e n a r i o user t o e n t e r a s c e n a r i o d e s c r i p t i v e of h i s desired use ,
and t h e engineer ing domain.

I n t h i s paper, w e w i l l address two main e lements 1) language
development and 2) p r o t o t y p e development . O r i g i n a l l y i t was
planned t o c a r r y o u t s e v e r a l o t h e r i nd iv idua l t a s k s involving t h e
d e v e l o p m e n t of r u l e s f o r s c e n a r i o d e s c r i p t i o n s a n d f o r
requirement ex t r ac t ion . Two cons ide ra t ions l e d u s d i r e c t l y from
l a n g u a g e development t o p r o t o t y p e development . F i r s t , t h e
s t ructure of t h e rules depends t o a great e x t e n t on t h e prototype
a r c h i t e c t u r e , and second, i t seemed u n n e c e s s a r y t o l i m i t t h e
scope of p o t e n t i a l "data system" des igns based on a s p e c i f i c se t
of der ived rules. For t h e l a t t e r reason we,chose t o i n v e s t i g a t e
t h e p o s s i b i l i t y of hav ing some of t h e r u l e s encoded by t h e expert
sys t em, t h u s h a v i n g t h e " e x p e r t knowledge" i n t h e a r e a of r u l e
- aene ra t ioq (meta r u l e s) rather than i n t h e area of specific data
system design, T h i s approach, a s w i l l be shown la te r , widens t h e
s cope of t h e e x p e r t system t o any sys t em t h a t c a n be described i n
terms of an automated data flow diagram (a data f low diagram w i t h
data rates, I / O devices , etc., s p e c i f i e d) ,

NGUAGE DEVEJiOPMENT

The o b j e c t i v e of t h i s a c t i v i t y was t o d e v e l o p a n d t e s t a
s t r u c t u r e d l a n g u a g e f o r e x p r e s s i n g user a c t i v i t i e s i n a way
s u i t a b l e f o r u s e i n a n e x p e r t s y s t e m t o r a e r i v i n g r e q u i r e m e n t s
a n d e x t r a c t i n g s y s t e m f u n c t i o n s . W e were g u i d e d i n t h i s
development by two cons idera t ions . F i r s t , t h e language m u s t be
a b l e t o c a p t u r e i n a s i m p l e way a user ' s d e s c r i p t i o n of

127

a c t i v i t i e s h e w i s h e s t o c a x r y o u t u s i n g a s y s t e m u n d e r
development. Second, t h e l a n g u a g e s t r u c t u r e m u s t be ab le t o
describe v i r t u a l l y any a c t i v i t y whether carried o u t by t h e system
a u t o m a t i c a l l y o r under t h e c o n t r o l of t h e user.

We have chosen t h e Operat ion a s t h e fundamental t r a n s a c t i o n
t o be d e s c r i b e d by t h e l a n g u a g e . An o p e r a t i o n i s shown
g r a p h i c a l l y i n F igure 2.

OPERATION

Figure 2. Language S t r u c t u r e

Each o p e r a t i o n is c o m p l e t e l y d e s c r i b e d by a n i n p u t , a n
o p e r a t o r , a n o u t p u t , and a d e s t i n a t i o n f o r t h a t ou tpu t . W e
s u g g e s t t h a t , f o r t h i s l anguage , i n p u t s and o u t p u t s can be
a s s o c i a t e d either w i t h data o r w i t h cont ro l . L i k e w i s e , ope ra to r s
c a n be e i t h e r a l g o r i t h m s , l o g i c a l o p e r a t i o n s , o r c o n t r o l
o p e r a t i o n s , The c o n c e p t of a n o p e r a t i o n , a s opposed t o a
p r o c e s s , a s b e i n g t h e b a s i c t r a n s a c t i o n a l l o w s g r e a t e r
f l e x i b i l i t y i n express ing user scenar ios .

The language which is developed a s a result of t h i s research
w i l l be based on t h e genera l form:

128

From WHAT INPUT use WHAT OPERATOR t o pe r fo rm WHAT
OPERATION t o produce WHAT OUTPUT which goes t o WHAT DESTINATION?

The i n p u t s and o u t p u t s c a n e i t h e r be e x t e r n a l i n p u t s ,
i n t e r n a l data f lows, or c o n t r o l s ta tements . The l a t t e r two cases
can be c o m p l e t e l y s p e c i f i e d by t h e user. I n t h e case t h a t t h e
user d e f i n e s i n p u t s t o o p e r a t i o n s , t h o s e i n p u t s m u s t form a
l o g i c a l sequence through t h e scena r io -- t h a t is, i npu t s m u s t be
e i the r e x t e r n a l da ta s o u r c e s o r o u t p u t s f rom p r e v i o u s s c e n a r i o
s ta tements . T h i s requirement w i l l be expressed by rules.

O p e r a t o r s a r e selected f rom a l i m i t e d l i s t of o p e r a t o r s
which have s p e c i f i e d f u n c t i o n a l i m p l i c a t i o n s for che ope ra t ions
concept and i n i t i a l design. Sample o p e r a t o r s might be:

INTERNAL DATA
DEFAULT VALUE
MANUAL DATA ENTRY
LOGICAL OPERATION
ENUMERATION
ALGORITHM
P O I N T I N G DEVICE

O t h e r o p e r a t o r s c o u l d be s p e c i f i e d by t h e user , b u t i f n o t
i n c l u d e d i n t h e i n i t i a l d e s i g n , t h e y would be c o n s i d e r e d a s
"exceptions". Details of ope ra to r s such as a lgo r i thms would be

s p e c i f i e d by t h e user.

L i k e w i s e ope ra t ions are selected from a t i x e d l i s t which are
related t o system f u n c t i o n a l , c a p a b i l i t i e s . Sample o p e r a t i o n s
would be:

CONVERT
LABEL
SELECT
DISPLAY

129

DELETE
INITIAL I 2 E
DETERMINE
IDENTIFY

O t h e r o p e r a t i o n s cou ld , of c o u r s e , be d e s i g n a t e d by t h e

user. W e a n t i c i p a t e t h a t t h e s e t of o p e r a t o r s and o p e r a t i o n s
presented here is no t complete and would have t o be modified and
expanded depending on t h e intended u s e and des ign of a s p e c i f i e d
data system.

Several sample s c e n a r i o s were developed using t h i s language
t o t e s t f o r t h e a b i l i t y of t h e l a n g u a g e t o e x p r e s s t h e user’s
a c t i v i t i e s , An e x i s t i n g u s e r system s c e n a r i o was used a s a
s t a r t i n g po in t , namely, one which was developed f o r o p e r a t i o n s
concept a n a l y s i s of t h e Space Telescope (ST) Science Operat ions
Ground Sy’stem. T h e u s e of a n e x i s t i n g s c e n a r i o h a s two
advan tages : F i r s t , t h e e f f o r t t o d e v e l o p a r e a l i s t i c s c e n a r i o
need not be repeated and second, t h e realism of t h e s c e n a r i o h a s
a l r e a d y been v e r i f i e d , The re is one d i s a d v a n t a g e an t h a t t h e
e x i s t i n g ST s c e n a r i o i s p r e s e n t e d i n g rea t e r d e t a i l t h a n can be
e x p e c t e d t o be hand led by ou r small sca le p r o t o t y p e sys t em,
However, t h e a d v a n t a g e of b e i n g ab le t o t e s t t h e l a n g u a g e w i t h
real is t ic s c e n a r i o s w e b e l i e v e is extremely valuable , Two such
s c e n a r i o s are presented here:

130

scena r io #1
Descript ion:
3LtiaE
User cu r so r
Action p o s i t i o n p o s i t i o n ope ra t ion

User keyboard . s p e c i f y image next
Action e n t r y d i s p l a y ope ra t ion

co-ordinate and d i s p l a y
request

image logical
d i sp l ay ope r a t i o n
co-ordinate
request

conver t image scratch f i l e
d i s p l a y and d i s p l a y

Scenario # 2

Descript ion: "Calcula te Offset Parameters"
INPUT OPERATOR OUTPUT
Use r key board s p e c i f y SI- scratch f i l e
Action e n t r y a c q u i s i t i o n and d i s p l a y

User keyboard s p e c i f y SI- scratch r i l e .
Action e n t r y observant and d i s p l a y

a p e r t u r e

User
Action

Offset
Reques t

Scra tch
f i l e

keyboard s p e c i f y small slew nex t
e n t r y o f f s e t ope ra t ion

request

l o g i c a l select scratch next
ope r a t i o n f i l e ope ra t ion

rithm
o f f set st

131

S e v e r a l o t h e r men t s u s i n g t h i s l a n g u a g e
were deve loped i n a n a t t e m p t t o demonstrate t h e
s t r u c t u r e d grammar
d e m o n s t r a t e t h a
s c e n a r i o a c c u r a s a r e u s
der ived s c e n a r i o then i n t h e i n i t i a l scenario. T h i s is a direct
result of t h e more genera l formula t ion expressed by t h e language.

Ba-sed o n t h e s u c c e s s o f o u r a t t e m p t t o d e v e l o p t h i s
s t r u c t u r a l grammar and its t e s t a g a i n s t a c t u a l ground system
ope ra t ions scena r ios , w e proceeded t o t h e pro to type development
i n .order t o v a l i d a t e t h e appropr i a t eness of t h e grammar f o r use
i n t h e e x p e r t system.

One aspect of an o p e r a t i o n s s c e n a r i o t h a t is not captured by
t h e s t r u c t u r e d grammar is t h e t i m e - l i n e . For t h i s i n i t i a l
f e a s i b i l i t y study, w e have l i m i t e d t h e research t o t ime-ordered
as opposed t o t ime-l ined scenarios. W e f e l t t h a t t ime- l in ing was
p r o b a b l y n o t f e a s i b l e u s i n g I Q L I S P on the IBM PC, t h e sys t em
chosen f o r t h e prototype development. Time-lining is, however,
extremely important i n e s t a b l i s h i n g performance requirements.

PROTOTYPE D EVEIIOPMENT

The architecture of t h e prototype provides a framework f o r
development of a l l a s p e c t s of t h e expe r t system. Because t h i s i s
a complex system comprising two i n t e r f a c e s (system engineer and
end user) and two types of e x p e r t knowledge (system knowledge and
requirement e x t r a c t i o n knowledge), w e expect t h a t t h e s t ructure
of t h e ru les w i l l depend i n f a c t on t h e a r ch i t ec tu re of t h e
s y s t e m . W e e f o r e c h o s e t o d e v e l o p t h e bas i c s y s t e m
a r c h i t e c t u r e ore p r o c e e d i n g t o d e v e l o p t h e n e c e s s a r y r u l e s .
The sys t em has c r u c i a l e l e m e n t s : The a n n o t a t e d da t a f l o w
d iag ram t o be d by t h e s y s t e m s e n g i n e e r , t h e s c e n a r i o t o be
e n t e r e d by t h e , r u l e s f o r s c e n a r i o t r y , and r u l e s t o r
requirem c t i o n . A s s t a t e d e l i e r , i n o r d e r t o

132

g e n e r a l i z e t h e sys t em, w e have chosen t o nave t h e r u l e s f o r
s c e n a r i o e n t r y be der ived from t h e system d e s c r i p t i o n (Le., t h e
annotated data f low diagram) .

The a r ch i t ec tu re of our Diogenes p r o t o t y p e is shown i n t h e
da ta f l o w d iag ram of F i g u r e 3. I t i s made up of two user
i n t e r f a c e s , two knowledge bases, s i x processes t e n dataflows.
Discussion of these elements fo l lows , proceeding clockwise from 9
o 'c lock . A t t h e e n g i n e e r ' s i n t e r f a c e , Diogenes engages t h e
engineer i n a predetermined d ia log , p re sen t ing menus based on any
known i n i t i a l requirements, It then assembles choices en te red
by t h e e n g i n e e r i n t o a n IQLISP-acceptab le d i s p l a y l i s t which
r e p r e s e n t s t h e a n n o t a t e d da t a f l o w diagram of t h e e n g i n e e r ' s
proposed data system.

Diogenes t h e n e n c o d e e t h i s d i s p l a y l i s t i n t o a s e t or
product ion rules based on expert knowledge, i n t h e form of meta-
rules , , of how these annotated diagrams a re related t o rules-of-
u s e f o r data systems.

Next, Diogenes e x e c u t e s a f i a l o q w i t h t h e system user which
i s d e f i n e d by t h e r u l e s e n t e r e d i n t h e p r e v i o u s s t e p , The
structure of t h e engineer 's system is presumed t i x e d and t h e user
is i n v i t e d t o a t t e m p t t o e n t e r t h e s c e n a r i o s w h i c h d e f i n e h i s
agenda w i t h i n it, However, p r o v i s i o n i s made f o r user c h o i c e s
w h i c h are "non-conforming", These c h o i c e s r e p r e s e n t f u n c t i o n s
which t h e engineer 's system cannot now perform b u t which che user
be l i eves it m u s t be able t o perform i n order t o be s a t i s f a c t o r y .

Diogenes assembles a usage r e c o r d f rom t h e u s e r - e n t e r e d
choices a f t e r r e j e c t i n g t h o s e which a r e i d e n t i f i e d a s s i m p l e
e n t r y e r r o r . T h i s time-ordered l i s t i n g of t h e user 's d i a l o g
r e p r e s e n t s t h e user's scenar io , modified by i t s i n t e r a c t i o n w i t h
t h e system rules.

133

USER

USAGE RECORD

ENGINEER

r e 3 . Diogenes Prototype Archite

134

Now Diogenes U v z e S t h e usaae D c o r d g created by t h e

modified s c e n a r i o based on--th-e meta-rules i n its knowledge base
w h i c h embody i t s exper t i se on t h e e f f ec t of u s e r e c o r d s on
system characteristics. It produces sets of rules which de f ine
t h e system, now modified t o accommodate the user scenario.

F ina l ly , Diogenes executes a d i a l o q w i t h t h e engineer based
o n t h e new memory-p roduc ing r u l e s . T h i s s t e p c l o s e s ' t h e
engineer-user s y s t e m de s i g n loop.

The o v e r a l l c o n t r o l of Diogenes is exe rc i sed by two sets o t
meta - ru l e s , One s e t embodies knowledge of t h e r e l a t i o n s h i p s
be tween s y s t e m d e s c r i p t i o n s i n t h e form o t a n n o t a t e d data f l o w
diagrams and r u l e s f o r s y s t e m usage. The o t h e r r e p r e s e n t s
knowledge of t h e r e l a t i o n s h i p s between usage records and system
performance requirements.

The use of t h e annotated da t a flow diagram a s t h e framework
f o r t h e s c e n a r i o e n t r y p r o c e s s i s , w e b e l i e v e , a f e a t u r e of t h e
proposed e x p e r t system: t h e data flow diagram a l lows v i r t u a l l y
any d e s i g n (of any t y p e sys t em: i.e., ground sys t em, s p a c e c r a f t
on-board system) t o be described. The s c e n a r i o e n t r y user works
w i t h i n t h i s f ramework and can d e f i n e h i s own o p e r a t i o n s w i t h i n
it. For example, t h e system engineer may describe data i n p u t s t o
major f u n c t i o n s , b u t t h e s c e n a r i o user can d e f i n e o u t p u t s of
ope ra t ions and i n p u t s t o subsequent ope ra t ions w i t h a great deal
of f l e x i b i l i t y ; these o p e r a t i o n s become e l e m e n t s of t h e n e x t
l e v e l of d e s i g n , as r e q u i r e m e n t s a r e ex t r ac t ed by t h e e x p e r t
s y s t e m and p r e s e n t e d t o t h e s y s t e m e n g i n e e r . A sample of a n
a n n o t a t e d data f l o w d iag ram of t h e t y p e t o be used f o r t h e
development of t h i s pro to type is shown i n F igure 4.

The f i r s t i m p l e m e n t a t i o n of ou r Diogenes p r o t o t y p e was
d e s i g n e d t o be u p and r u n n i n g q u i c k l y , s o a s t o h e l p u s i n o u r
research. The p r o t o t y p e u s e s a n i n f e r e n c e e n g i n e encoded i n

135

INPUTS
A

PP SCI DATA

R-T SCIENCE

SYSTEM

SCIENCE
DATA FILES -
qT COMMAND
3EQUESTS.

DESllNATION

A-N DISPLAY
IMAGE DISPLAY

Figure 4 . Annotated Data F l o w Diagram

136

IQLISP and c a n be run on a n IBM PC.

D i o g e n e s i n b r o a d o u t l i n e o n l y a n d i n - _ many -_ ways s i m p l y
foreshadows t h e f u l l y func t ioning system.

As a r e s u l t , i t r e p r

For example, t h e f i r s t i m p l e m e n t a t i o n c a n e x e c u t e a n d
assemble t h e resul ts of a d i a l o g w i t h a systems engineer and w i t h
a system user. The l a t t e r is rule-based, t h e former is not. The
f i r s t implementat ion does n o t s e p a r a t e l y r ep resen t i ts knowledge
bases as t h e f u l l system w i l l . The f i r s t implementation does n o t
produce system rules rrom annotated diagrams o r requirement r u l e s
from usage records, It performs only a rudimentary usage record
assembly runc t ion by counting t h e frequency wi th which each menu
e n t r y was chosen by t h e user.

The prototype operates as follows:

F i r s t , t h e s y s t e m s e n g i n e e r i n t e r a c t s w i t h Diogenes t o
describe t h e design of a proposed data system. The design can be
e x p r e s s e d a t any des i red l e v e l of d e t a i l . T y p i c a l l y , w e e x p e c t
t h a t i n i t i a l l y t h e design would be expressed a t a h igh l e v e l and
through success ive i t e r a t i o n s come t o be expressed i n g r e a t e r and
g r e a t e r d e t a i l a s user s c e n a r i o s a r e l i k e w i s e e n t e r e d w i t h
g r e a t e r detai l a t each i t e r a t i o n . The ou tpu t of t h e i n t e r a c t i o n
would be a n annotated data f low diagram w i t h s tandard opera t ions ,
s t a n d a r d o p e r a t o r s , i n p u t s , o u t p u t s , and i f known, pe r fo rmance
characteristics.

Second, a p r o s p e c t i v e end u s e r i n t e r a c t s w i t h Diogenes t o
describe and record t ime-l ined d e s c r i p t i o n s of h i s proposed u s e
f o r t h e f i n a l ‘data sys tem, S c e n a r i o e n t r i e s a r e v a l i d a t e d
a g a i n s t t h e proposed d e s i g n based on ru l e s f o l l o w i n g f rom t h e
system engineer i n t e r a c t i o n and except ions noted.

Descr ip t ions of except ions are used by t h e system engineer
i n r h e n e x t s u c c e s s i v e d e s i g n d e s c r i p t i o n . T h i s i s l i k e w i s e a n
i t e r a t i v e i n t e r a c t i o n . I n i t i a l l y there would be many except ions

137

noted, and a s t h e proposed system design is i terated, except ions
would be e x p e c t e d t o become less f r e q u e n t . The man-machine
i n t e r f a c e f o r Diogenes is a keyboard and an alphanumeric display.
Diogenes is & a pro to typing system. There is na: 'capabi l i ty f o r
bu i ld ing d i sp lays , f o r example,

The d i a l o g f o r t h e s y s t e m e n g i n e e r i s f a i r l y s i m p l e ,
c o n s i s t i n g of a s e r i e s o f q u e r i e s r e g a r d i n g t h e sy . s t em
d e s c r i p t i o n w h i c h is t o be i n t h e form of a data flow diagram,
a n n o t a t e d a s t o data f l o w d e s c r i p t i o n s , da t a r a t e s , volumes,
etc., and w i t h I/O devices .

The s c e n a r i o e n t r y i n t e r a c t i o n d i a l o g i s l i k e w i s e s imp le ,
but r e l a t ed t o a ra ther s o p h i s t i c a t e d s c e n a r i o lankjuaga i n t h e
form described ear l ier i n t h i s paper.

...

As s t a%ed above, i n p u t s t o t h e s y s t e m are t h e s y s t e m s
engineers ' input t o aescribe t h e system, and t h e prospec t ive end
user's inpu t t o describe h i s scenario. 'The s c e n a r i o e n t r y d i a l o g
i n c l u d e s i n f o r m a t i o n s t a t e m e n t s t o t h e p r o s p e c t i v e end user t o
describe whether h i s s c e n a r i o s t a t emen t was accepted (v a l i d a t e d
a g a i n s t t h e design) o r rejected. If rejected, reasons a re given.

A p r i n t e d d e s c r i p t i o n of t h e p r o p o s e d d a t a s y s t e m i s
a v a i l a b l e a f t e r each systeriis e n g i n e e r i n t e r a c t i o n . A t t h e
c o m p l e t i o n of a n i n t e r a c t i o n (one s y s t e m e n g i n e e r s e s s i o n
fol lowed by a prospec t ive end user se s s ion) t h e fo l lowing p r i n t e d
o u t p u t s are available:

1. Complete d e s c r i p t i o n of t h e scena r io , e n t r y process (a l l
user keyboard e n t r i e s and system responses)

2. The s e t of v a l i d a t e d s c e n a r i o s ta tements

3 . A list of user except ions (cases where proposed design
cannot accommodate t h e desired use)

" % - 4. . A l i s t of r e q u i r e m e n t s ex t rac ted from t h e s c e n a r i o

r e l a t i v e t o t h e proposed system design. -_ -
- I

The s y s t e m s e n g i n e e r i n g user i s c o n s t r a i n e d t o d e s c r i b i n g
t h e sys t em i n terms of a n a n n o t a t e d da ta f l o w diagram, The
p r o s p e c t i v e e n d user i s c o n s t r a i n e d t o desc r ibe s c e n a r i o
a c t i v i t i e s i n terms of t he s c e n a r i o e n t r y language.

W e b e l i e v e t h a t t h e proposed s y s t e m and i t s p o s s i b l e
e x t e n s i o n s have g r e a t a p p l i c a b i l i t y . An e x p e r t s y s t e m w h i c h
assists a d e s i g n e r i n p r o v i d i n g a computer s y s t e m naving h i g h
f i d e l i t y t o user requirements has t he p o t e n t i a l f o r playing a key
r o l e in t h e many u s e r - o r i e n t e d compute r s y s t e m s t h a t w i l l be
deve loped i n t h e f u t u r e . The b e n e f i c i a l p r o d u c t s of s u c h a
system are two fold. F i r s t , the system provides an a n a l y s t w'ith
a r ap id , . a c c u r a t e means of d e r i v i n g f u n c t i o n a l and pe r fo rmance
r e q u i r e m e n t s . Second, t h e deve lopment of any sys t em w h i c h

employs a user -or ien ted requirements s tudy a s a p a r t of a f r o n t -
end a n a l y s i s i s l i k e l y t o be more c o s t e f f e c t i v e i f user needs
are considered earlier rather than l a t e r i n t h e evolu t ion of t h e
system.

I n add i t ion , t h e eventual implementation of such a system is
l i k e l y t o i n c l u d e a v e r y e f f e c t i v e means of r a p i d man-machine
i n t e r f a c e p r o t o t y p i n g and a means of d e r i v i n g a c c e p t a n c e t e s t s
procedures . Another key fea ture of t h e s y s t e m e n a b l e s t h e
knowledge base t o grow t o r e p r e s e n t t h e aggregate e x p e r t i s e oi:
the best systems engineers. Considering t h e b e n e f i t s of such an
e x p e r t s y s t e m f o r a s s i s t i n g i n t h e development of l a r g e scale
systems w e conclude t h a t most f u t u r e systems development programs
w i l l n o t o n l y employ t h e me.thodology described here, b u t w i l l
a l s o make use of a n expe r t system f o r t h a t purpose.

The work d e s c r i b e d i n t h i s paper was perfdfrnhd f er t h e J e t
Propulsion Laboratory as NASA SBIR 0708-5300.

14u

